
Combinatorial Models for Heterogeneous System
Composition and Analysis

Saigopal Nelaturi
and Johan de Kleer

System Sciences Laboratory
Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304
Email: nelaturi, dekleer@parc.com

Vadim Shapiro
Spatial Automation Laboratory

1513 University Avenue
University of Wisconsin, Madison

Madison, Wisconsin - 53703
Email:vshapiro@engr.wisc.edu

Abstract—Complex systems with high dimensional design
spaces are often specified by subsystem compositions that con-
strain feasible designs towards tight regimes in the design space.
Composition between (sub)systems is limited by the interfaces
exposed by the interacting architectures. Treating architectures
as first class objects with their own formal properties is required
to enable designing complex systems by novel compositions of
heterogeneous subsystems and their design spaces. We describe a
combinatorial model for system architectures using the formalism
of cellular sheaves to identify all feasible compositions across
heterogeneous subsystems through exposed interfaces. We discuss
how the proposed model may be used to automatically generate
novel systems of systems compositions and test key properties of
composability and compositionality, required for solving planning
and reconfiguration problems in systems of systems design.

I. INTRODUCTION

Most complex physical systems (e.g. cyber-physical sys-
tems) share the main characteristics of embedded systems [1].
Such systems are platform-aware implying that the system
design depends on the execution platform (e.g. system on a
chip, distributed system) as much as spatio-temporal physi-
cal constraints. In other words, the system design space is
constrained simultaneously by the end application and by the
particular platform architecture used to implement a design.
Although designing platform-aware complex systems is often
a substantially hard problem (e.g. designing aerospace or
robotic surgery systems), the conceptual framework pushes
system designs towards solutions operating efficiently within
tight regimes in the combined design space of all interacting
subsystems. Modularity is the preferred outcome but not a key
performance criterion of such designs.

Recognizing that modularity and reuse leads to greater
system adaptivity has driven the development of flexible man-
ufacturing and robotic systems, which is based on the idea of
building reconfigurable production systems from standardized
modular subsystems [2]. Such systems are still platform based,
albeit with an increased feasible design space due to reconfig-
urability. Despite the size and complexity of platform-based
systems, their design spaces are possibly hard to precisely
characterize but always known a-priori and are often fixed
to match application specific goals.

The approach of working with a-priori known design spaces
helps component and small subsystem design but eventually
leads to two substantial problems. First, system integration
becomes extremely challenging because interfaces are defined
a-posteriori. Essential design concerns are usually separated
into physical systems, software, and platform engineering;
poorly understood interactions and conflicts across design
domains appear at the system integration stage [3]. Second,
the component-based approach depends on key properties of
compositionality (system level properties can be computed
from component properties) and composability (component
properties do not change by virtue of interactions with other
components) [4]. Compositionality and composability must
not adversely affect important system and component prop-
erties such as safety, stability, and performance. Therefore
system integration often requires extensive analysis and sim-
ulation.

Establishing compositionality for physical system proper-
ties (such as stability) is non-trivial even for simple cases.
For example two objects (e.g. pencils on a table) may be
in stable equilibrium and may be composed via compati-
ble interfaces (contact surfaces) by placing one object over
another. However, the resulting composition is in (possibly
unstable) equilibrium only for a very small set of relative
configurations obtained by balancing one object over another.
Verifying compositionality requires modeling and simulation
to find parameters where properties of composed systems may
be derived from properties of system components. Similarly,
establishing composability may be fairly easy for component
based systems but is not so for general combinations; for ex-
ample chemical reactions fundamentally alter the structure of
entities (elements become compounds) after composition and
the physical properties of these entities are lost (e.g. oxygen
supports combustion but water does not). Therefore model
based simulation is critical to evaluate properties of composed
systems. However, compositionality or composability can only
be evaluated after explicitly checking that interface types are
compatible.

In this paper we consider a dual design paradigm where
the primary objects are not component design/state spaces but



rather the exposed interfaces for composition. The architecture
and design spaces for composition are not known a-priori,
resulting in a platform-agnostic environment. However, the
available interfaces are pre-defined so that interoperability
of components and architectures is enabled by construction.
This paradigm anticipates a scenario where services derived
from networked cyber-physical and software systems are dy-
namically deployed and composed to enable multi-functional
devices and systems. For example, one could envision a
medical emergency scenario where a cyber-physical system
uses location based services to guide the vehicle carrying
a patient to the nearest hospital, informing the hospital in
advance of the patient’s arrival and medical condition while
notifying the patient’s family through a mobile device [5].

Designing composed heterogeneous systems of systems
requires rapid exploration, planning, and mapping across soft-
ware and cyber-physical services. We claim that the ability to
rapidly generate and test design spaces (for compositionality
and composability) is afundamental requirement to achieve
such composition. Traditional design space exploration at-
tempts to find novel designs in a fixed design space, whereas
the interface driven approach aims to find novel compositions
of design spaces that are capable of solving unanticipated
applications. The interface-centric design space exploration
is dual to traditional design space exploration and is better
equipped to solve problems whose solutions require recon-
figuration of existing and deployed systems, as opposed to
synthesizing designs for components and subsystems that
combine to form new systems. It is critical that each such
composition is accompanied with a model based simulation
that evaluates compositionality and composability.

A-priori defining composable interfaces combinatorially de-
scribes the space of architectures generated by all available
and feasible interface compositions. In this paper we describe
how feasible architectures have the topological structure of
a cell-complex generated through combinatorial interactions
of interfaces. Associating data available at the interfaces to
each element in the cell-complex represents the architecture
as a cellular sheaf. The cellular sheaf representation of sys-
tem architectures implicitly encodes all local combinations
of feasible and compatible interface compositions that may
be assembled into a global system composition, so that for
each composition a model based simulation can evaluate
compositionality and composability. Each global composition
(i.e. interface combination) corresponds to a design space over
which the simulation is posed.

II. RELATED WORK

A. Service oriented computation

System composition through interfaces is related in spirit
to the paradigm of service oriented computing. Services (e.g.
web services) are self-describing, platform-agnostic compu-
tational elements that support rapid, low-cost composition of
distributed applications [13] (e.g. over the internet) using a
standardized communication protocol (e.g. SOAP). Applica-
tions are developed by composing services with well-defined
interfaces, while abstracting away internal details. While this

approach works well in particular for web services, interface
compatibility is a necessary but insufficient condition for
compositionality of cyber-physical systems. For example, the
(compositional) stability of a control system implemented
with networked controllers is highly dependent on nonlinear
effects of probabilistic delays, uncertain processor availability,
and signal quantization [3]. The ability to accurately model
and simulate particular composition architectures is key to
evaluating the efficacy of designs generated by composing
autonomous systems treated as services.

The service oriented computing paradigm is inherently
modular, allowing for service (or system) reuse and extension
by treating a set of services (or systems) as a programming
library. Conceptually, service composition is predicated on the
existence of standardized reference semantics and protocols
that express how services in a library expose their behavior
through an API. Efforts in automated service composition
[14], [15], [16] have shown that the construction of an or-
chestrated service as a finite state transition machine (transi-
tioning between inputs and outputs of the composed services)
is EXPTIME-hard in the presence of temporal constraints.
Essentially the behavior of each system is abstracted into
a set of (internal) states, actions, and transitions, and the
composition of such behaviors may be accomplished in time
exponential in the number n of behaviors. Therefore it is im-
portant that n is kept small so that composition algorithms are
tractable. Systems in the library are composable (see Section
I) because behaviors of individual systems are preserved in
the orchestrated service.

The key requirements for effective system design through
composition are
• The ability to specify systems through composable in-

terfaces that abstract away internal implementations and
platform dependencies

• A description of composed interface architecture
• The ability to systematically generate and test multiple

architectures
• A model based simulation that evaluates compositionality

B. Combinatorial system design and analysis

Physical systems are usually modeled, designed, and ana-
lyzed using a differential (i.e. smooth) comprehension of the
world, but the models and analysis are always implemented
using discrete representations and algorithms. Many of these
data structures, such as those used in finite element methods,
are combinatorial because the domain on which the physical
problem is posed may be approximated by a finite combination
of primitive elements. The accuracy of the physical analysis is
therefore only as good as the accuracy of the approximation.
However, using tools of discrete exterior calculus [9], it has
been shown that the finite data structure itself can be used
to extract physically meaningful conservation laws [10], [11]
without requiring the differential formulation. Essentially, the
designed object is represented as an oriented cell complex [9]
and physical quantities such as current, mass, force etc can
be formally defined as algebraic objects called chains and co-
chains. The immediate consequence of this representation is



Fig. 1. The sheaf condition highlighted for sets Ui and U j in a collection of
sets whose union is U . At every set Ui in the collection, a query is defined
such that the range of the query is a design space SA1 ×SA2 × . . .×SAn . If
queries qi and q j (with common design space) defined over sets Ui and U j
agree at the intersection Ui∩U j for every pair Ui,U j of sets in the collection,
then there is a unique query q : U → SA1 × SA2 × . . .× SAn such that the
restriction of q to Ui is qi.

that most spatial, physical, and design laws may be expressed
algebraically and applied on the cell complex.

We first show (in Section III) necessary conditions for
composability through interface composition, and then show
(in Section IV) that interface combinations have the structure
of a cell complex. Using the observations made on service
oriented computing and combinatorial design, we propose
cellular sheaves as a data structure that encapsulates necessary
conditions for interface composability and compositionality.
Elementary operations on cell complexes then allow gener-
ating new interface architectures that can be used to test
compositionality over alternative system compositions.

III. INTERFACES IN SYSTEM COMPOSITION

A. System models as sheaves

We will build upon the framework of categorical systems
theory [12], where objects/systems in the real world are
modeled in terms of a set of maps (which we call queries)
into design spaces, such that the maps describe observable
system properties. We model systems living in U = X × T
of R3× (R+∪0) (three spatial dimensions and one temporal
dimension with a distinguished initial time 0). Every system
S in U is expected to have an interface at which S’s attribute
spaces SA1 , . . . ,SAn are queried through a combination of
sensors and updated through in-built models. A query q is
a map from U to a product space of finitely many attribute
spaces. Each such product space is considered as a design
space where particular attribute spaces are queried. In other
words, the range of a query is a design space. Notice that a
system may have multiple design spaces so that application
specific queries may be constructed into the relevant design
space. The image q(u) of a query evaluated at u ∈ U onto
a design space returns an instance of the system attributes
that describe the system in a physically meaningful way; i.e.
queries are the fundamental entities that associate physical
meaning to a system.

When the sheaf condition [12] is satisfied (see Figure 1),
local queries qi defined over subdomains Ui ⊂ U can be
fused into a unique global system query q over U = ∪Ui
whose restriction to each Ui returns the corresponding qi. In

other words, the sheaf condition says that any set of pairwise
consistent queries (i.e. queries that agree where their domains
overlap) can be fused together into a unique query over the
union of their domains. This is very useful, because it allows
recursively building queries over large U by modeling them
piecewise in smaller Ui. In reality a set Qi of queries may be
posed at each Ui. Then the sheaf Q is the set of queries defined
over U which includes all q that meet the sheaf condition and
describe the system’s relevant states/events/physical properties.
Q is called the system model. Queries in the system model
may be related through maps between design spaces called
constraints. The system interface is the set Q(U) of images
q(U) for each query q ∈ Q (constrained by other queries) in
the system model.

Goguen [12] provides many examples of concurrent inter-
acting systems modeled as sheaves. A particularly illustrative
example is when the system model is a sheaf that models
a deterministic (but not necessarily finite state) machine S.
The attribute spaces are SA1 (inputs), SA2 (states), and SA3
(outputs). Suppose we are given an initial state σ , a state
transition function δ : SA1 × SA2 → SA2 , an output function
β : SA2 → SA3 , and a system model Q = {q1,q2,q3}. The
queries in Q are defined as follows: q1 : U → SA1 returns an
input, q2 : U→ SA2 returns a state, and q3 : U→ SA3 returns an
output. The design spaces in the system model are the ranges
of the queries, i.e. SA1 ,SA2 ,SA3 . The queries can be thought
of as signals that respect the sheaf condition; for example
the input query q1 may be defined ‘piecewise’ so that the
pieces agree only at the overlaps between the Ui ⊂ U . It is
usually convenient to model discrete time. Then Q for the
deterministic machine/automata has the following constraints

q2(x,0) = σ (1)
q3(x, t) = β (q2(x, t)) (2)

q2(x, t +1) = δ (q1(x, t +1),q2(x, t)) (3)

It can be checked that q2,q3 also meet the sheaf condi-
tion. Note that non-determinstic automata can be modeled
by redefining δ : SA1 ×SA2 → 2SA2 to return a set of states,
and updating the constraint in Equation 3 as q2(x, t + 1) ∈
δ (q1(x, t +1),q2(x, t)).

In many cases it may be hard to explicitly define the system
model Q, for example to characterize a complex system such
as an NC machine tool. However, it is possible to test the sheaf
condition via constraints on queries that monitor important
attributes such as spindle speeds and power consumption.
Unexpected or faulty behavior of physical systems occurs
when the sheaf condition is lost. Therefore, we assume every
query in a system model Q satisfies the sheaf condition.

B. Composability

The sheaf condition implies composability of queries be-
cause local queries are preserved when q is restricted to the
Ui (see Figure 1). However, the sheaf condition by itself is a
weak statement of composability because it relies exclusively
on restriction maps at intersecting subdomains (see Figure
1). Queries from distinct but composable systems may not



restrict identically at the intersections of the Ui to produce
a sheaf without some non-trivial transformation, e.g. when
components are queried in independent coordinate systems but
have to be merged into (and queried in) a common coordinate
system for assembly.

Let us assume there are multiple systems that can interact
in U . For systems Si,Sk to be composable, interfaces to the
services they provide must be interoperable. To formalize this
notion, consider queries qi : U→Di,qk : U→Dk in the system
models of Si,Sk. The systems are composable if and only if
there exist attachment maps ai and ak that map the design
spaces Di,Dk into a common design space Dik such that
• ai ◦ qi = ak ◦ qk. Here ◦ indicates usual function compo-

sition. Equivalently we may say the diagram in Equation
4 commutes (all sequences of arrows initiating at U and
terminating at Dik are equivalent).

Dk U Di

Dik

ak

qk qi

qik ai
(4)

Diagram commutativity implies that the images of the
queries match after attachment into the common design
space. Notice that an interface is defined through maps
from U into a design space. Therefore diagram commuta-
tivity implies an interface through the query qik : U→Dik
for the composed system Sik. It may be shown that qik
satisfies the sheaf condition [12].

• There are maps (ai)
−1 : Dik→ Di and (ak)

−1 : Dik→ Dk
such that ai ◦ (ai)

−1 and ak ◦ (ak)
−1 are identity maps

on Dik. If such a condition does not exist, then the
individual systems Si,S j cannot co-exist with their com-
position and are therefore not composable. For example
elements and their compounds cannot simultaneously co-
exist in a chemical composition, therefore they cannot be
simultaneously queried.

Systems Si and Sk with models Qi and Qk are composable
if and only if there exist qi ∈ Qi and qk ∈ Qk that satisfy the
above properties. The composed system model Qik contains all
queries qik for which there exist commutative diagrams such as
the one shown in Equation 4. The first property ensures that the
constituent systems being composed have compatible interface
types, otherwise composition is not possible. The second
property ensures that the constituent systems co-exist with
the composition, and can still be queried to check that their
individual properties preserved after composition. When these
properties are satisfied, the resulting Qik(U) is the composed
system interface.

In general, the image of any (ai)
−1 should be a subset of

qi(U) to indicate that the original interfaces are preserved but
constrained by the composition. In non-obvious cases, charac-
terizing the (ai)

−1 and (ak)
−1 may require solving an inverse

problem where qik(U),ai,ak are known but the constituent
qi(U) and/or qk(U) (after composition) are not. Composability
is then determined by solving for qi(U),qk(U) and checking
if they are operating as designed and that ai ◦ (ai)

−1 and

ak ◦ (ak)
−1 are identity maps on Dik. Alternatively, given a

qi and ai, a forward problem could be solved with given
attachment maps to explicitly identify the subset of qi(U) for
which composition is feasible. Then the (ai)

−1 will map onto
this subset.

Since all maps originate from a common source U , and
interfaces are defined through commutative diagrams, we will
use

Dk→ Dik← Di (5)

as an equivalent compressed notation for the commutative
diagram in Equation 4. When the properties for composability
are met, more complex diagrams such as the one shown
in Figure 2 may be constructed when multiple composable
interfaces interact in a domain U .

IV. COMBINATORIAL DESCRIPTION OF INTEROPERABLE
SYSTEM MODELS

A. Data structures for system composition

Dkl Dk Dkn Dn Dnp Dp

Dl Dkm Dno Dnop Dpo

Dlm Dm Do

Fig. 2. A simplicial complex representing composable interactions between
design spaces Dk . . .Dp. Observe the distinction between the compositions
corresponding to design spaces Dn,Do,Dp (connected by a triangle) and
Dk,Dl ,Dm (connected by 3 edges). Dk,Dl ,Dm can only communicate pair-
wise but Dn,Do,Dp share a common interface.

Given a collection of potentially interoperable systems mod-
eled in a domain U , we first observe that all possible inter-
actions can be captured in the form of an abstract simplicial
complex. A simplicial complex is combinatorial description
of a topological space by gluing together topological primi-
tives called simplices. Simplices can also be given geometric
meaning; a k−simplex is the convex hull of k + 1 affinely
independent points. We use special names for the first few
dimensions, a 0-simplex is called a vertex, a 1-simplex is
called an edge, a 2-simplex is called a triangle, and a 3-simplex
is called a tetrahedron.

Every design space of every system Si in U is represented as
a vertex. When a pair of systems Si,Sk are composable through
design spaces Di and Dk, an undirected edge may be drawn
between the design spaces to represent a composable interface
(i.e. Dk→Dik←Di is well defined). When three systems are
composable, the corresponding composed systems interface
is represented as a 2-simplex, represented geometrically as
a triangle with interior to indicate all possible interactions
between the vertices (see Figure 2).



In a commutative diagram each query qi composed with an
attachment map ai satisfies the sheaf condition. Each such
composition ai ◦ qi is an element of the composed system
model. When all the design spaces have the same type (e.g.
if all the design spaces are vector spaces), the composed
system model is a sheaf of that type (e.g. vector spaces) over
a simplicial complex [6]. The attachment maps are defined
between design spaces, and so can be thought of as constraints
in the composed system model (see Section III-A). Notice
that we have progressed from defining query composition over
subdomains Ui⊂U through the sheaf condition, to establishing
composability via interface attachments in Section III, and now
we see that composability again leads to a type of sheaf,
albeit defined over a combinatorial space. Each composed
interface is represented geometrically as a k−dimensional
simplex where k indicates the number of interacting systems
in the composition.

Sheaves over simplicial complexes, also called cellular
sheaves, are data structures that may be used to represent the
interaction between sensors (sources of data) and their data
fields in a mutually consistent manner [7]. The correspondence
between cellular sheaves and composable systems implies a
dynamic cellular sheaf within a domain U may be maintained
to describe interoperability of systems living in U . When
new systems appear in U , their design spaces may be added
or glued to existing simplicial complexes after checking the
newly available interfaces are composable. Similarly, when
systems are removed from U , the simplicial complex is
updated through an operation called a collapse [8]. Informally,
removing a design space Di deletes all higher dimensional
simplices1 that contain Di. The system sheaf is automatically
updated when the simplicial complex is modified.

B. Generating and Testing Design Spaces

Recall that establishing composability may require solving
an inverse problem in complex cases (see Section III-B) which
can be challenging if the interface compositions constrain the
constituent system design spaces. Once composability is es-
tablished and the system sheaf is constructed, combinations of
interacting interfaces can be generated systematically by enu-
merating topologies through gluing and collapsing operations.
Each such combination requires solving a forward problem
to test compositionality, which again could be challenging
depending on the queries in the system model [3]. However,
we must require the existence of a model based simulation if
compositionality is computationally evaluated.

We now describe a simple example that illustrates sys-
tematically generating and testing design spaces arising from
system compositions. Consider six systems S1, . . . ,S6 with
models Q1, . . . ,Q6. For simplicity, let us assume each Qi has
a single query qi and that every design space is a vector
space. Each system Si therefore consists of a single interface

1The set of all higher dimensional simplices incident to a vertex is called
its star, so collapsing a vertex removes its star from the simplicial complex

Qi(U) = {qi(U)} at which the results of internal computation
at u≡ (x,y,z, t) ∈U return the following vectors

q1(u) = (Q,A,B,1 i f t < 10 else 0)

q2(u) = (C,D,E,1 i f
√

x2 + y2 + z2 < 25 else 0)
q3(u) = (P,F,D,1 i f z > 10 else 0)
q4(u) = (B,G,Q,1)
q5(u) = (C,D,1)
q6(u) = (C,H,Q,1)

Each vector qi(u) represents the interface of system i
queried at u ∈ U . The components of each qi(u) are values
determined by constraints that are not exposed at the interface.
The final element of the interface is an element of {0,1} that
indicates whether a system is active (1) or not (0) by evaluating
a constraint. To describe composable systems, we are provided
attachment maps that indicate how the systems may interact.
Systems are capable of interaction if they are composable, i.e.
if component values match at the interfaces after attachment.
For example, consider queries q1,q4 with attachment maps

a1 = a4 =

[
1 0 1 0
0 0 0 1

]
(6)

The composition a1 ◦q1 = a4 ◦q4 because

[
1 0 1 0
0 0 0 1

]
·


Q
A
B
1

=

[
Q+B

1

]
=

[
1 0 1 0
0 0 0 1

]
·


B
G
Q
1

 (7)

Equation 7 implies D1→D14←D4 is well defined, therefore
design spaces D1(∼=R4) and D4(∼=R4) represented as vertices
may be joined by an edge in a simplicial complex. Similarly
we can define other interactions between design spaces of ac-
tive systems through attachment maps. All feasible interactions
in this example are defined in terms of the cell complex in
Figure 3.

Fig. 3. Feasible interactions between active systems. A k−dimensional
simplex implies k−composable interfaces.

Notice that if t > 10 in q1(u), S1 and S4 are not composable
because S1 is inactive but S4 is active (and the sheaf condition
is lost). Similarly S1 and S6 are not composable when S1

is inactive. Assuming all other systems other than S1 remain
active, the simplicial complex may be updated to reflect this
change through an elementary collapse that removes D1. This
results in the updated cell complex shown in Figure 4.

Observe that n constraints on the system of systems lead
to n! distinct simplicial complexes with associated cellular



Fig. 4. The simplicial complex in Figure 3 after collapsing D1. Notice from
Figure 3 that the star at the vertex D1 consisted solely of edges. If a vertex
such as D3 is collapsed, it would remove two edges and a triangle from the
simplicial complex.

sheaves. Furthermore, observe that any of these sheaves may
be transformed to any of the other (n!−1) remaining sheaves
through a sequence of elementary collapses and gluing oper-
ations. Then notice that the gluing and collapsing operations
are inverse maps of each other, in the sense that a simplicial
complex remains unchanged if a vertex is collapsed and
then glued back or vice versa. Therefore all compositions of
active systems through design spaces may be systematically
generated and tested. The cellular sheaf corresponding to each
topology encodes the interface compositions and the design
space for the composed system of systems. The problem of
system composition is transformed into the dual problem of
interface composition through attachment maps, which leads
to the enumeration of all possible system of system topologies
from constraints on queries.

When systems are inactive (or lost through a collapsing
operation), we may wish to proxy their behavior using the
remaining systems. In cases where the system of systems is
engineered with redundancy (i.e. when an interface can be
queried through many compositions), then the lost interface
may be recovered by querying the data attached to the star
of the vertex before collapse. This will return all active
(uncollapsed) systems that share an interface with the inactive
(collapsed) system. If the interface cannot be recovered by
directly quering the cellular sheaf of the modified simplicial
complex, a simulation of the remaining systems in all feasible
compositions is required to identify the best composition that
can approximate the lost system’s behavior, while satisfying
the stated constraints. Therefore the systematic enumeration
of cellular sheaves is also an enumeration of all possible
simulations that may be conducted to replicate collapsed
system behavior.

V. CONCLUSIONS

We have shown that describing system interfaces in terms
of a commutative diagram of queries leads to a data struc-
ture whose underlying topology is a simplicial complex, and
where the data itself has the structure of a cellular sheaf.
The proposed data structure is accompanied with elementary
operations of gluing and collapse, which are essential to de-
scribe dynamically changing topology of interactions between
multiple systems. The data structure also describes system
models (through queries) and therefore captures the entire
search space of possible compositions.

Further extensions to the proposed data structure would
involve the application of tools from computational topology
to predict system properties through topological invariants
such as homology groups. A particularly interesting extension
is the ability to combinatorially describe physical laws that
govern the interaction of multiple systems, by extending the
formulation of sheaves over simplicial complex to sheaves
over a chain complex. We expect that using tools such as
Tonti diagrams used in algebraic topological descriptions of
physical theories will provide greater insight into finding stable
interface compositions.

VI. ACKNOWLEDGMENT

The authors would like to thank John Paschkewitz from
the Defense Sciences Office at DARPA for helpful discus-
sions. Vadim Shapiro’s research was supported by NSF grants
CMMI-1344205 and CMMI-1361862 and the National Insti-
tute of Standards and Technology. The responsibility for errors
and omissions lies solely with the authors.

REFERENCES

[1] Drechsler, R., and Kühne, U., 2015. “Formal modeling and verification
of cyber-physical systems”.

[2] Rogers, G., and Bottaci, L., 1997. “Modular production systems: a new
manufacturing paradigm”. Journal of Intelligent Manufacturing, 8(2),
pp. 147–156.

[3] Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis,
P., Gupta, V., Goodwine, B., Baras, J., and Wang, S., 2012. “Toward a
science of cyber–physical system integration”. Proceedings of the IEEE,
100(1), pp. 29–44.

[4] Gössler, G., and Sifakis, J., 2003. Formal Methods for Components
and Objects: First International Symposium, FMCO 2002, Leiden, The
Netherlands, November 5-8, 2002, Revised Lectures. Springer Berlin
Heidelberg, Berlin, Heidelberg, ch. Composition for Component-Based
Modeling, pp. 443–466.

[5] Geisberger, E., and Broy, M., 2015. Living in a networked world: Inte-
grated research agenda Cyber-Physical Systems (agendaCPS). Herbert
Utz Verlag.

[6] Robinson, M., 2014. Topological signal processing. Springer.
[7] Joslyn, C., Hogan, E., and Capraro, M. C., 2015. “Conglomeration of

heterogeneous content using local topology (chclt)”.
[8] Edelsbrunner, H., and Harer, J., 2010. Computational topology: an

introduction. American Mathematical Soc.
[9] Desbrun, M., Kanso, E., and Tong, Y., 2008. “Discrete differential forms

for computational modeling”. In Discrete differential geometry. Springer,
pp. 287–324.

[10] Ramaswamy, V., and Shapiro, V., 2003. “Combinatorial laws for
physically meaningful design”. In ASME 2003 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, American Society of Mechanical Engineers,
pp. 585–594.

[11] Tonti, E., 2001. “A direct discrete formulation of field laws: The cell
method”. CMES- Computer Modeling in Engineering and Sciences, 2(2),
pp. 237–258.

[12] Goguen, J. A., 1992. “Sheaf semantics for concurrent interacting
objects”. Mathematical Structures in Computer Science, 2(02), pp. 159–
191.

[13] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F., 2007.
“Service-oriented computing: State of the art and research challenges”.
Computer(11), pp. 38–45.

[14] De Giacomo, G., Di Ciccio, C., Felli, P., Hu, Y., and Mecella, M., 2012.
“Goal-based composition of stateful services for smart homes”. In On the
Move to Meaningful Internet Systems: OTM 2012. Springer, pp. 194–211.

[15] De Giacomo, G., Mecella, M., and Patrizi, F., 2014. “Automated service
composition based on behaviors: The roman model”. In Web Services
Foundations. Springer, pp. 189–214.

[16] Muscholl, A., and Walukiewicz, I., 2007. “A lower bound on web
services composition”. In Foundations of Software Science and Com-
putational Structures. Springer, pp. 274–286.


