
Submitted to SOCS’09 1

A depth-first approach to target-value search

Tim Schmidt, Lukas Kuhn, Bob Price, Johan de Kleer, Rong Zhou
Palo Alto Research Center

3333 Coyote Hill Rd
Palo Alto, CA-94304

Abstract
In this paper, we consider how to improve the scalability
and efficiency of target-value-path search on directed acyclic
graphs. To this end, we introduce a depth-first heuristic
search algorithm and a dynamic-programming method to
compute the heuristic’s pattern database in linear (in the
number of edges) time. We show the benefits of the new
approach over previous work on this problem (Kuhn et al.
2008b).

Introduction
In a target value path problem, we are interested in find-
ing a path between two nodes in a graph, such that some
additive function (typically the sum) of the path’s edge
weights or values comes as close as possible to the target-
value. Such problems arise amongst others when inte-
grating model-based planning and diagnosis (Kuhn et al.
2008a). where liberties in attaining production goals are
exploited for maximising information gain about the pro-
duction system in order to increase long-run productivity.
Intuitively the graph models valid action sequences for at-
taining some production goal and edge weights represent
the diagnosis engine’s confidence that the respective compo-
nent is working correctly. Assuming single, non-intermittent
faults, selecting the path whose predicted success probabil-
ity is as close as possible to 0.5 maximizes the diagnostic
engine’s information gain about the system’s true state (Liu
et al. 2008). Other potential domains include comprehensive
training programmes, with complex temporal and causal in-
terdependencies between courses where participants need
to reach certain point thresholds (i.e. university studies or
mandatory professional training programmes) or determin-
ing nightly-build processes out of a large set of interdepen-
dent transformation (compilation, automated refactorings,
code generation, etc.) and analysis tasks (unit and integra-
tion tests, code coverage, model checking, clone detection,
profiling, etc.) to make best use of allotted time.

Problem definition
Given a directed acyclic graphG = (V,E) with edge values,
a target-value-path (or tvp in short) between two vertices

Copyright c©2009, Palo Alto Research Center (www.parc.com),
All rights reserved

v0, vg ∈ V with target-value tv is some path between v0
and vg , whose value is closest to tv. We define the value
g(p) of a path p as the sum of its edge values. Let Pv0,vg

be the set of all paths between v0 and vg in G. Then we
define P tv

v0,vg
= argmin
|tv−g(p)|

Pv0,vg the set of paths between v0

and vg with minimal deviation from tv as the target-value
path set with respect to v0, vg, tv. In the following target-
value search (or tvs, in short) refers to a mapping of tuples
(v0, vg, tv) to some element of P tv

v0,vg
.

Conventions
For reasons of clarity and brevity, we limit our discussion to
connection graphs. The connection graph Cv0,vg

is the sub-
graph of G, containing v0, vg and those vertices in V that
are both descendants of v0 and ancestors of vg as well as all
edges (∈ E) between them. We note, thatC can be extracted
by creating the union of a breadth-first sweep from v0 along
successor links and from vg along predecessor links in time
and space linear in the size of G (O(|V | + |E|)). We gen-
erally assume, that predecessors can be accessed efficiently
and that edge values are positive.

In terms of notation, we omit indices where they are im-
plied by context. We use the term prefix for any path from v0
to some vertex in C, the term suffix for any path from some
vertex or interchangeably from (the last vertex of) some pre-
fix to vg (note that any vertex or prefix will have at least one
suffix), the term completion of a prefix, for its concatenation
with some of its suffixes and the term optimal completion of
a prefix w.r.t a tv, to denote the completion that is closest to
tv.

Target value search is a challenging problem because it
does not exhibit the property of optimal substructure, a pre-
requisite for greedy or dynamic programming approaches
(as are typically leveraged for, e.g., shortest-path problems).
While for all possible decompositions pre ◦ suf of a tvp
w.r.t some tv, suf will be a tvp (from its first vertex to vg)
w.r.t tvsuf = tv − g(pre) and pre will be a tvp (from v0
to the last vertex in pre) w.r.t tvpre = tv − g(suf), tvpre

and tvsuf are interdependent, and so are the respective cost
functions for the subproblems. See figure 1 for an example.
Worst case, all prefixes in C up to (roughly) value tv will
have to be generated during a tvs This leads us to believe
that tvs is in EXPTIME, as the number of these prefixes



Submitted to SOCS’09 2

v0 v1 vg

e1, .2

e2, .3

e3, .2

e4, .3

Figure 1: tvs does not exhibit optimal substructure: consider the
above graph for tv = 5. after we expanded v0 we have two paths
< e1 >, < e2 > to v1. Both can lead to optimal solutions with the
right completion (i.e. < e1, e4 > and < e2, e3 >), the selection
of which depends on the whole prefix, not only on its last vertex

g*(pa)

g(pa) h(pa)

tv

f(pa) f*(pa)

Figure 2: an example for why a heuristic that underestimates
suffix lengths will not lead to an admissible tvs heuristic: here
f(p) = |tv − (g(p) + h(p))| > f∗(p) = |tv − g∗(p)| while
g(p) + h(p) < g∗(p)

can be exponential in the number of vertices in C.

Heuristic Target Value Search
A straightforward approach to tackle tvs problems is to
use some estimate h of suffix lengths and search through
path space with A∗ (Hart, Nilsson, and Raphael 1968) us-
ing an inadmissible guiding function, such as f(pre) =
|g(pre)+h(pre)− tv|. Note, that if h underestimates suffix
lengths (e.g. it is admissible for shortest-path search), f will
generally not be admissible for tvs due to the non-linearity
introduced by the absolute value operator. See figure 2 for
an example. The basic idea being to find a good solution
tvpcur quickly and use it to prune the Open list of all pre-
fixes, whose g value exceeds tv + |tv − g(tvpcur)|. The
search terminates, if either a perfect solution is found (i.e.
g(tvp) = tv), or the Open list is empty (returning tvpcur).

Previous Work
(Dow and Korf 2007) show, how an admissible heuristic can
be constructed for the non-standard objective function of the
treewidth problem and then be employed in best-first search.
(Kuhn et al. 2008b) construct a pattern database (Culberson
and Schaeffer 1996) to derive a consistent heuristic for best-
first target value search. They show, that problem structure
can be leveraged in two ways: First, prefixes ending in the
same vertex and having equal value can be considered du-
plicates and be used to prune the search tree. Second, given
the pattern database for the graph, one can, in addition to
guiding the search, detect when the problem of finding an
optimal suffix for some prefix degenerates into a shortest or
longest path problem, which can then be solved straightfor-
wardly in vertex space. The pattern database (pdb in the fol-
lowing) contains bounds of vertices’ different paths’ values

v0

vg

e5 =0.9

e 4
=2
.4e 3=

0.6

e 2
=0
.8

e1 =0.8

[0.9;0.9]

[0.0;0.0]

[1.5;2.4]

[1.7;3.2]

v2

v1

Figure 3: the connection graph (solid edges) of v0 and vg with
edge values and entries of a single interval pattern database

to vg . Given some prefix pre and tv, one can use the pdb to
determine, whether the target value for the suffix tv−g(pre)
falls outside the bounds stored in the pdb. If so, the problem
of finding an optimal completion for pre breaks down to ei-
ther a shortest- or longest-path problem, both of which can
be solved using dynamic programming.

The f(pre) function is defined as 0, if tv − g(pre) falls
inside the interval, otherwise as the distance of tv − g(pre)
to the closest bound. This can be used in a (more or less)
standard A∗ with duplicate detection as sketched out above.
In contrast to the first approach, which in most cases (if there
is no perfect tvp in the graph) has to generate all prefixes
in C, with g < tv + f∗, this can often make due with a
small subset, typically offsetting the cost for constructing
the pdb (especially if multiple queries are performed with
the same vg). In the worst case, both algorithms have to
generate all prefixes with values ≤ tv + f∗ in C, situating
them in EXPSPACE. Also the algorithm for computing
the pdb as given in (Kuhn et al. 2008b) has a worst-case
exponential runtime complexity.

In the following, we will show, how to extend the above
pdb concept, how to compute such pdb using an algorithm
with linear runtime in the size of C and how to apply depth-
first branch and bound search to tvs. We then give empirical
evidence that the combination of these techniques allows us
to scale tvs to much larger problems than before.

Pattern Database
The pdb of (Kuhn et al. 2008b) stores a single interval per
vertex, with the bounds comprising of the least and largest
value of that vertex’s suffixes. Thus the interval approxi-
mates the range of possible suffix values for that vertex (i.e.
the respective values of the shortest and longest paths from



Submitted to SOCS’09 3

a1

a2
a0

a3

a4

an

...

...

Figure 4: To compute both shortest and longest paths for its pdb
(Kuhn et al. 2008b) proposes a backward propagation scheme that
can require exponential time on graphs like this on.

the vertex to vg). We extend that concept, by allowing the
pdb to store multiple, disjoint intervals per vertex, provid-
ing a more fine-grained approximation. First, we give a
short recapitulation of how the pdb was built in (Kuhn et
al. 2008b). The pdb is build using a simple propagation
scheme, starting from vg . Initially, all pdb entries are ini-
tialized to [+∞,−∞] (the largest/least possible lengths of
shortest/longest paths from that vertex to vg) , except vg ,
which is set to [0; 0] and vg is added to a (fifo) queue. Then,
in each iteration, the next vertex is removed from the queue
and for each in-edge e, the lower bound of the predecessor
is set to the min of its former lower bound and the sum of
value(e) and the lower bound of v. The same is done for
the upper bound (usingmax). If the predecessor’s pdb entry
changes in the process, it is added to the queue. The algo-
rithm terminates, once the queue is empty.

This is one of the two major culprits in preventing the
scaling of tvs to large graphs (see empiric evaluation). Con-
sider the example in figure 4 under the following assump-
tions: a0 is currently head of the queue, vertices are returned
by the ancestor function in the order of their numbering and
each update changes the pattern database entry of the respec-
tive vertex. First, a0 is expanded, thereby updating a1 and
a2 and placing them on the queue (in this order). Now a1 is
expanded, and all its predecessors (not shown in the figure)
are placed on the queue. Next is a2. Here as of our as-
sumptions, a1 gets updated and is thus placed on the queue,
along with a3. Now all the predecessor of a1 are processed,
until we encounter, again, a1 on the queue, resulting in its
updated predecessors being added to the queue again. And
so forth. In the worst case, each vertex is updated once for
each distinct path between it and the goal vertex, resulting in
exponential (in the number of vertices) worst-case running-
time for constructing the pattern-database.

This can be avoided by using a dynamic programming ap-
proach, as each pdb entry only depends on the entries of its
successors in C. As we are dealing with acyclic graphs, pro-
cessing vertices in some (inverse) topological order during
construction of the pdb ensures that all successors entries are

already available. During construction, we store a counter
with each vertex, initialized with its number of successors
in the connection graph C (technically we only need to cre-
ate/initialise the counter, once we first encounter the vertex
and can remove it, once it hits zero). We begin with a queue
holding the vg vertex, its pdb entry set to [0; 0]. At each step,
we remove the first vertex from the queue, combine the inter-
vals from all its successors in C, and decrement the succes-
sor counter of all its predecessors by one. Should the counter
reach 0, we add the predecessor to the queue. The successor
intervals are conceptually combined in three steps: First, all
successor’s intervals are transformed, by adding the value of
the respective edge to all bounds. Second, any overlap be-
tween the transformed intervals of all successors is resolved
by computing the smallest covering intervals. Third, while
number of intervals exceeds a user-defined maximum, the
two closest intervals are fused. See figure 5 for an example.

value

s12 5 8

3 7

1 4 6

s2

s3

v

Figure 5: pdb entry construction for some vertex v with succes-
sors s1, s2, s3: successor ranges are shifted by the value of the
resp. connecting edge. These intervals are accessed in ascending
order of their lower bounds (denoted by the numbers). We begin
by fetching the first interval and set it as temp. While there are any
unprocessed successor intervals, we fetch the next and compare it
to temp. If they intersect we set temp’s upper-bound to next’s, else
we add temp to v’s pdb entry and set next as temp. Finally, we add
temp to v’s entry (creating the entry shown in the upper row of this
example).

Using this technique, each vertex in C will be processed
only once. This can be shown through an induction proof:
If all of the descendants of v have been accessed only once,
then this is especially true for its successors, so v’s successor
counter will be 0, v will be added to the queue and thus
be processed once (induction step). vg starts on the queue
and has no descendants in C, so vg (the global descendant)
will only be accessed once (base case). From this follows,
that each edge will be accessed twice (in the predecessor
direction to update the counts and the other way to process
the intervals). This results in running time ofO((k+1)|E|),
where k denotes the user defined maximum size of a pdb
entry. For the example graph (figure 4) this scheme imposes
the processing order: a0, a2, . . . , an, a1. There is still one
potential issue with this approach: it does not impose any
constant bounds on queue size. If the lattice graph shows
little topological structure (i.e. all vertices other then v0 and
vg have exactly v0 as predecessor and vg as successor), the



Submitted to SOCS’09 4

queue can grow up to |V | − 2 vertices in a lattice graph.
Redeemingly, tvs is trivial in such graphs, as the number of
paths is only |V | − 2.

The f -function compares a prefix pre’s target-value to-go
tv′ = tv − g(pre) against the pdb entry of pre’s last vertex.
Should tv′ lie inside some interval, there is a chance that an
optimal completion of pre yields precisely the original tv.
Thus, in order to be admissible, f has to rank such prefixes
highest and return 0; else, the function returns the distance
between tv′ and the closest bound. As all possible comple-
tion lengths lie within the intervals and all bounds represent
actual path lengths, this is the closest any completion of said
prefix can come to the original target value. So, in essence,
f either gives perfect guidance (f(pre) > 0) or no guidance
at all (f(pre) = 0). Intuitively, assuming tvs uniformly
distributed over the range of the graph’s path-lengths, the
probability of the former case is inversely proportional to
the ”area” covered by the intervals. In a DAG, this area in-
creases monotonically in the link-distance from vg , as each
vertex’s pdb entry covers at least as much ground as each of
its successors. (see figure 5 and, for an example figure 3).
Formally:

f(pre) = min
int∈pdb(pre.last)

(dist(int, tv − g(pre))) (1)

Here, a pdb entry is a sorted list of up to k intervals inti =
[lb, ub] such that ∀i ∈ 1 . . . k : inti.lb ≤ inti.ub and ∀i <
j : inti.ub < intj .lb, dist is defined as

dist([lb, ub], s) =
{

0 if lb ≤ s ≤ ub,
min(|lb− s|, |ub− s|) else.

(2)
The f function has the following properties: First, it rep-

resents a lower bound on the value of our objective func-
tion for the best (and thus for all) possible completions of
pre in G. Second, for all complete paths p ∈ Pv0,vg ,
f(p) = dist([0; 0], tv − g(p)) = |tv − g(p)| equals the
objective function. This allows us to use f as prefix eval-
uation function for heuristic search. Due to the way the
pdb is built, f is also consistent. That is, for any prefix
pre and its descendant pre′, f(pre) ≤ f(pre′) holds. In
particular, for any prefix pre, f(pre) > 0 there will be at
least one immediate successor pre′ with equal value (i.e.
f(pre) = f(pre′)), indicating pre′ is part of the optimal
completion of pre.

Depth-first Heuristic Target Value Search
In the context of heuristic tvs with the above f function,
there are two ways in which prefixes can be redundant:
Duplicity the optimal completions of any pair of prefixes

ending in the same vertex, with equal g(pre)s (for these
prefixes) will share the same suffix and have equal devi-
ation from the original target-value. In other words the
respective best solutions stemming from said pair will be
equal with regards to tvs’s objective function and (either)
one of the prefixes can therefore be considered redundant
and be discarded.

Domination For any prefix pre with f(pre) > 0, f(pre)
is the actual deviation of pre’s best completion from the
original tv. Therefore, for any pair of prefixes prea, preb

with f(prea) > f(preb) > 0, prea is dominated by preb

and can therefore be discarded.

While it is well known, that A∗ is optimal in the num-
ber of node expansions for consistent heuristics (such as f )
(Dechter and Pearl 1985), duplicate detection can be expen-
sive in terms of memory and computational overhead, as (in
the worst case) all previously visited nodes have to be re-
tained. This is especially so for domains in which duplicates
occur rarely, such as tvs, where (due to their definition) du-
plicates are much rarer compared to shortest-path searches
on the same graph (prefixes ending in the same vertex are
not considered duplicates if they have different g-values).

The algorithm
To guarantee optimality, we have to generate all prefixes in
f ’s ”blind-spot” reachable from v0 (i.e. where f = 0). In the
worst case, this can be the largest part of the graph’s path-
space, i.e. the number of these prefixes can be exponential in
the size of the graph. This is the second culprit that prevents
best-first tvs from scaling to larger graph sizes. At some
point the vast share of these prefixes will have to be kept in
A∗’s Open and Closed lists, resulting in a worst-case mem-
ory requirement that is exponential in the number of vertices
in C.

To circumvent this, we opted to forego duplicate detec-
tion and use an algorithm based on Depth-First Branch-and-
Bound Search to search through the blind-spot and deter-
mine the prefix preopt with lowest f 6= 0 on its ”rim” . Due
to the properties of f , we know that preopt’s optimal com-
pletion will be the tvp. Subsequently we reconstruct the tvp
from preopt using a simple greedy procedure. We will now
describe these algorithms in more detail:

Algorithm 1: DFTVS(v0, vg, tv)
Input:
v0 : vertex ; // start
vg : vertex ; // goal
tv′ : float ; // target value

begin
setConnectionGraph(v0, vg);1
buildPdb(vg);2
path pre := pathFrom(v0);
path preopt := ∅;
float fopt :=∞;
float tv′opt :=∞;
DFBnB(pre, tv, vg, preopt, fopt, tv

′
opt);3

EXP(preopt, tv
′
opt, vg);4

return (preopt, fopt);5

end

Function DFTVS (listing 1) sets the connection graph (1)
and computes a pattern database for vg (2). It calls DFBnB,
which computes preopt, fopt and tv′opt(3). preopt and tv′opt



Submitted to SOCS’09 5

are then fed to EXP to (if necessary) expand preopt to the
tvp (4). Finally, it returns the tvp and its deviation from tv
(5).

Algorithm 2: DFBnB(pre, tv′, vg, preopt, fopt, tv
′
opt)

Input:
pre : path ; // v0 → . . .→ v
tv′ : float ; // tv − g(pre)
vg : vertex ; // goal
Output:
preopt : path ; // v0 → . . .→ v
tv′opt : float ; // tv − g(preopt)
fopt : float ; // f(preopt)

begin
vertex v := endOf(pre);
float valf := f (v,tv′);
if v = vg ∨ valf > 0 then1

if valf < fopt then2
preopt := pre; fopt := valf ; tv′opt := tv′;

return;
foreach edge e : outEdges(v) do3

addTo(pre, e);
float tv′new := tv′ - edgeVal(e)
DFBnB(pre, tv′new, vg, preopt, fopt, tv

′
opt);4

if endOf(preopt) = vg ∧ fopt = 0 then5
return;

removeLast(pre);6

end

Note that f ’s signature differs slightly from above: in-
stead of paths, its arguments are a path’s last vertex and its
target value to-go tv′, preventing repeated recalculations of
path length. Procedure DFBnB first checks whether to end
its depths-first traversal (1): that is, if pre is a path either
to vg or leads out of the blind-zone (f(pre) > 0). If in
addition, pre dominates preopt, the latter is displaced (2).
Otherwise, the traversal continues (3): Iteratively, each out-
going edge of v is concatenated to pre, the corresponding tv′
computed, followed by a recursive call to DFBnB. If this de-
scent produced a perfect tvp, the recursion is terminated (5),
preventing an unnecessary sweep of v’s remaining descen-
dants. Finally, pre is restored to its prior value in preparation
for the next edge (6).

Procedure EXP’s termination test is whether pre ends in
vg (1). Otherwise it computes the best outgoing edge of
pre′s last vertex and its corresponding tv′ (2) & (3), con-
catenates the edge pre (4) and calls itself on the new pre (5).
The prefix produced by the depth-first branch and bound
search is either an explicit solution (if it ends in vg and thus
represents a perfect tvp), or an implicit solution, whose best
completion leads to an optimal solution. In the latter case,
a greedy expansion of pre by its best successor suffices to
build the tvp.

While the computational worst case complexity remains
exponential in the number of vertices in C, the memory
requirements are bounded by the number of edges in E

Algorithm 3: EXP(pre, tv′, vg)
Input:
tv′ : float ; // tv − g(pre)
vg : vertex ; // goal
Output:
pre : path ; // v0 → . . .→ vg

begin
vertex v := lastOf(pre);
if v = vg then1

return;
float valmin:=∞;
float tv′best;
edge ebest;
foreach edge e : outEdges(v) do2

float tv′new := tv′ - edgeVal(e);
if f(target(e), tv′new) < valmin then3

valmin := f(target(e), tv′new);
ebest := e;
tv′best = tv′new;

addTo(pre, e);4
EXP(pre, tv′best, vg);5

end

(O(|E|)), as in an acyclic graph, the longest pre can still
only contain each edge at most once. This situates DFTVS
in EXPTIME.

Example
Now we will give a small step through example of a DFTVS
query for tv = 2.4. First, DFTVS sets the connection graph
and builds an pdb as shown in figure 3. Figure 6 shows the
call graph for DFBnB and EXP (grey). Each entry com-
prises of the prefix (as C is not a multi-graph, prefixes can
be represented as stacks of vertices for brevity and clarity, v0
at the bottom), the related f-value (in the white ellipsis) and
the respective target value to-go (in the grey ellipsis). DF-
BnB starts its descent with recursive calls I and II. Here the
traversal is first stopped as we have left the blind-zone (non-
zero f -value), so DFBnB retains this prefix as intermediate
solution preopt. The depth-first traversal continues with III,
stopping again as expansion has left the blind-zone (prefix
ends in vg and has f 6= 0). preopt is not displaced due to
its lower f -value (0.1 vs.0.8). DFBnB’s traversal continues
with calls IV and V . Here, preopt again is not displaced af-
ter comparison of the f -values. preopt, the grey-white node,
is the initial calling context of EXP (V I). EXP concate-
nates the best (and in this case only) successor and calls itself
(V II). This final call to EXP will terminate the recursion as
pre ends in vg . The stack now holds the tvp between v0 and
vg for tv = 2.4.

Evaluation
In the following, we give an empirical evaluation of DFTVS
comparing it to BFTVS and inadmissible A∗ with the short-
est path as guiding heuristic on two synthetic test domains



Submitted to SOCS’09 6

v0 2.4

0

v0

v1

1.6

0
v0

v2

1.6

0

v0

v1

v2

1.0

0.1
v0

v1

vg

-0.8

0.8
v0

v2

vg

0.7

0.7

I

II III

IV

V

v0

v1

v2

vg

0.1

0.1

VII

VI

Figure 6: Call graph for a DFTVS query (tv = 2.4) on the graph
from fig 3.

sparse and dense. All tests were performed on a machine
with a 2.8 GHz Intel Core 2 Duo CPU with 4 GB of ram
running Mac OS X 10.5.6. We implemented all algorithms
as parts of a uniform framework, to allow for fair runtime
comparisons.

Synthetic Domains

width

he
ig
ht

Figure 7: The sparse domain: vertices are always connected to
their ”right”, as well as their ”lower” or ”upper” neighbors (de-
pending on whether the column is ”odd” or ”even”

Both domains represent connection-graph lattices, con-
sisting of designated start and goal vertices and a “grid”
of vertices between them. Generally edge values are as-
signed randomly (sampled from a uniform (0; 1] distribu-
tion). Both are parameterized in terms of width, height and
a seed value for a random-number generator. In the sparse
domain, vertices (with the exception of v0 and vg) have a
constant out-degree of 2, and path-lengths (in number of ver-
tices) between start and goal vary between width + 2 and

width

he
ig
ht

Figure 8: The dense domain: vertices are always connected to
their ”right” neighbor; additionally, for each other vertex in the
”right” neighboring column, there is a connection with probability
p

height ∗width+ 2. Its general connection pattern is shown
in figure 7.

The dense domain has uniform path-lengths (in number
of vertices) of width + 2. An additional parameter, prob-
ability p, governs the out-degree of nodes in the grid: a
vertex has a connection to a vertex in its ”right” neighbor
column with probability p (besides its direct right neighbor,
with whom it is always connected). This results in an aver-
age out degree of p ∗ (width − 1) + 1, (which is approxi-
mately p ∗

√
|V | for the ”square” graphs we mostly use in

the evaluation). In general, for ”square” graphs, we use the
term dimension (d) to denote width and height parame-
ters. Also, if not otherwise noted, we allowed (up to) 5 in-
tervals per pdb entry and used 0.5 as probability parameter
for the dense domain.

Both domains are hard in that they contain a large number
of paths (exponential in width for dense, and in width ∗
height for sparse).

Search

0 0.2 0.4 0.6 0.8 1
target value (as SP+x*(LP-SP))

100

1000

10000

100000

1x106

1x107

1x108

m
icr

os
ec

on
ds

DFTVS d=5
BFTVS d=5
A* d=5
DFTVS d=6
BFTVS d=6
A* d=6
DFTVS d=7
BFTVS d=7
A* d=7
DFTVS d=8
BFTVS d=8

Figure 9: average search times for target values between the short-
est and longest path in dense graphs of A∗ with the shortest path as
guiding heuristic (d : 5, 6, 7), BFTVS and DFTVS (d : 5, 6, 7, 8).

Figure 9 shows the average time (in µsec), using anA∗ for
inadmissible heuristics with f(x) = |T − (g(x) + sp(x)|,



Submitted to SOCS’09 7

BFTVS (standard A∗ for consistent heuristics with our pdb)
and DFTVS algorithms with target-values ranging from the
shortest- to longest path lengths in the underlying dense
graphs. BFTVS and DFTVS queries include pdb construc-
tion, whereas we did not include the time for computing the
shortest-path lengths used by A∗ (they were retrieved from
a pre-computed pdb at runtime). Each data point represents
an average over 25 graphs. The runtime distributions re-
flect the normal distribution of path lengths in the dense do-
main. The problem is hardest, if the tv is right between the
shortest- (SP ) and longest-path (LP ) of the graph, as most
paths come close to the tv and can only be rejected late by
the heuristic, resulting in a large blind-spot. The relative
differences in running time widen rapidly from one order of
magnitude at d = 6 to three orders of magnitude at d = 8
between BFTV S and DFTV S, so we limited this com-
parison to very small graphs, with the inadmissibleA∗ being
between 1 and 3 orders of magnitude worse then BFTVS.

0 0.2 0.4 0.6 0.8 1
target value (as SP + k * (LP - SP))

100

1000

10000

100000

1x106

1x107

1x108

m
icr

os
ec

on
ds

DFTVS d=5
BFTVS d=5
A* d=5
DFTVS d=6
BFTVS d=6
A* d=6
DFTVS d=7
BFTVS d=8

Figure 10: average search times for target values between the
shortest and longest path in sparse graphs of A∗ with the short-
est path as guiding heuristic (d : 5, 6), BFTVS and DFTVS
(d : 5, 6, 7).

Figure 10 gives the average running time for the sparse
domain, albeit for smaller graphs (up to d = 6 for the A∗
with inadmissible heuristics and d = 7 for BFTVS and
DFTVS. Even on these small graphs, search times are about
an order of magnitude higher in comparison to dense graphs
with the same number of vertices.

Figure 11 gives an overview of running times for
DFTV S queries (µ = red line, σ = error bars) in relation
to graph size. Per data point, we created 10 instances (dif-
fering in their seed values) and executed 1000 queries with
tv randomly sampled from a uniform [SP ;LP ] distribution
against each. Note, how DFTV S’s µ, σ for the 8102 ver-
tex d = 90 graph are about 1/10th and half BFTV S’s µ
(∼ 9.5 ∗ 105), σ (∼ 1.3 ∗ 106) on the 66 vertex d = 8 graph
from figure 9. mirrors

Figure 12 shows the same for the sparse domain up to 902
vertices graphs (d = 30). While the mean is only moderately
worse then in dense, the standard deviation of query time

20 40 60 80
dimension

0

100000

200000

300000

400000

500000

600000

m
icr
os
ec
on
ds

Figure 11: DFTV S/dense: mean and standard deviation for
search times in relation to domain size.

5 10 15 20 25 30
dimension

0

200000

400000

600000

800000

1x106

1.2x106

m
icr
os
ec
on
ds

Figure 12: DFTV S/sparse: mean and standard deviation for
search times in relation to domain size.

grows much quicker.

Pattern Database
Figure 13 gives a comparison of the time (in µsec) needed to
build the pattern database for different graphs (dimensions
3-90) using the old method of (Kuhn et al. 2008b) and our
new method. Each data point represents an average over 25
graphs (different random seeds). The results show that the
high computational overhead limits the old approach to very
small graphs, particularly so on the sparse domain with its
comparatively larger number of paths. The higher cost of
the new approach in the dense domain is due to the amount
of edges in the dense domain growing quadratically in the
height parameter. Average construction times were between
50 µsec (d=3) and 28 msec (d=90) for the sparse domain.

The larger pdb computation time for building the pdb is
the only sense in which dense is the harder domain. For
all other purposes, the much larger of paths in the sparse



Submitted to SOCS’09 8

100 1000 10000
vertices

0

2x106

4x106

6x106

8x106

m
icr

os
ec

on
ds

old - sparse
old - dense
new - sparse
new - dense

Figure 13: average pdb construction times for the old and new
approach on the sparse and dense domains.

domain make it a much harder search problem.

5 10 15 20 25 30 35 40
dimension

0

50000

100000

150000

200000

250000

m
icr
os
ec
on
ds

1
2
4
8
16
32

Figure 14: DFTV S/dense: means of search times for different
maximal pdb entry sizes (number of intervals) in relation to domain
size.

Figure 14 shows how the number of intervals per pdb
entry influence search time. With the exception of single
and dual intervals per entry, doubling the number of inter-
vals seems to roughly half the query’s runtime. This co-
incides with the observations of (Holte and Hernádvölgyi
1999) about memory-based heuristics.

Conclusion
In this paper, we have introduced a new approach for target-
value path search that allows us to tackle problems at least
two orders of magnitude larger than the previous state of the
art. We have described an improved method for computing
the pattern database in linear time with respect to the number
of edges, achieving significant computational savings over

the previous approach, which suffers a worst-case exponen-
tial time complexity for building the pattern database. We
have also described a depth-first approach to target-value
search that successfully avoids the memory bottleneck in
the previous algorithm that uses best-first search. As de-
manded by a number of applications such as on-line diag-
nosis, the real-time aspect of target-value search can be im-
portant. Fortunately, the contributions of this paper make
it possible to solve target-value search problems of realistic
sizes in realtime or quasi-realtime.

References
Culberson, J., and Schaeffer, J. 1996. Searching with
pattern databases. Lecture Notes in Computer Science
1081:402–416.
Dechter, R., and Pearl, J. 1985. Generalized best-first
search strategies and the optimality of A*. Journal of the
ACM (JACM) 32(3):505–536.
Dow, P., and Korf, R. 2007. Best-first search for treewidth.
In Proceedings of the National Conference on Artificial In-
telligence, volume 22, 1146. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths. Systems Science and Cybernetics, IEEE Transac-
tions on 4(2):100–107.
Holte, R., and Hernádvölgyi, I. 1999. A space-time trade-
off for memory-based heuristics. In Proceedings of the Na-
tional Conference on Artificial Inteligence, 704–709. John
Wiley & Sons Ltd.
Kuhn, L.; Price, B.; de Kleer, J.; Do, M.; and Zhou, R.
2008a. Pervasive diagnosis: the integration of active di-
agnosis into production plans. In Proceedings of the 23rd
AAAI Conference on Artificial Intelligence (AAAI-08).
Kuhn, L.; Price, B.; de Kleer, J.; Schmidt, T.; Zhou, R.;
and Do, M. 2008b. Heuristic search for target-value path
problem. In The First International Symposium on Search
Techniques in Artificial Intelligence and Robotics.
Liu, J.; de Kleer, J.; Kuhn, L.; Price, B.; Zhou, R.; and
Uckun, S. 2008. A Unified Information Criterion for Eval-
uating Probe and Test Selection. In Prognostics and Health
Management, 2008. PHM 2008. International Conference
on, 1–8.


