
Model-based diagnosis in SOPHIE III1

Johan de Kleer and John Seely Brown
Xerox Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto CA 94304 USA
Email: dekleer, brown@parc.xerox.com

April 24, 1992

Abstract

This paper describes the model-based diagnostician used in SOPHIE
III. This diagnostician is capable of localizing faults in analog circuits such
as DC power supplies. Although it presumes that the circuit contains a
single fault, it introduces a variety of important model-based techniques:
(1) it uses models of component behaviors to perform first-principles rea-
soning to detect conflicts and corroborations with observations, (2) it con-
siders a component to be faulted if its removal would eliminate all conflicts
yet preserve all corroborations, (3) it uses propagation of constraints with
numerical ranges, (4) it uses fault mode information to eliminate compo-
nents from consideration, and (5) it provides a smooth integration with
rule-based diagnostic rules when first-principles reasoning is inadequate
to perform the diagnosis.

1 Introduction and history of the SOPHIE project

The research described in this paper took place over a five-year period and cen-
tered around three different SOPHIE systems (known as SOPHIE I, SOPHIE
II and SOPHIE III). Work began on what was to become SOPHIE I in early
1973 at the University of California at Irvine and was completed in 1977 at Bolt
Baranek and Newman in Massachusetts. SOPHIE was a large project which
produced results in diverse domains. This paper focuses on one small part of
this project: the inferential machinery for drawing diagnostic inferences in SO-
PHIE III. The following is a brief history of the SOPHIE project. For a fuller
overview of the project see [1].

1This paper integrates excerpts from a number of earlier papers. Two of these are: “Ped-
agogical, natural language and knowledge engineering techniques in SOPHIE I, II and III”
by J.S. Brown, R. R. Burton and J. de Kleer which appeared in Intelligent Tutoring Systems
edited by D. Sleeman and J.S. Brown published by Academic Press (1982) [1]; “Local meth-
ods of localizing faults in electronic circuits,” by J. de Kleer published as M.I.T. Artificial
Intelligence Laboratory Memo AIM-394 (1976) [2]. This paper was retypeset with a modern
Latex on May 14, 2019.

1

22 21 1 5 7 9 11 11 24 25 2650V 50V
1A 0.1A 30V 10V

Node Numbers
Current
Control

Current
Control
Trimpot

Current
Range
Switch

Voltage
Range
Switch

D1 R8

Q1

Q4

Q3 R13 R14 R15 R16 R6 R5 R4 R3 D3
1500Ω

1W
2200Ω

1W
1225Ω14KΩ 0.5Ω 2Ω 4Ω1000Ω2.6Ω

5W
37

VAC

37
VAC

D2

C3
500µ
75V

C4

500µ
75V

2

Q2

R9
3300Ω

3

R11
1500Ω

R22
510Ω

6

4

Ø Ø

Q6

C6
200F

0.5V
Q5

10 13
D6

23

- +
output

C5
50µ
50V

R7
5000Ω

R7a

R7b

C2
50µ
50V

14

+
36V
-

+
 56V
-

D4
 56V

D5
36V

14

C1
100µ
200V

T2

72 VAC

SOPHIE-full-circuit

0-32

Voltage
Control

15

16

8

0.7−30

Figure 1: Schematic of the IP-28

The Air Force had expressed in interest in using computers in their advanced
electronic-troubleshooting course, particularly in the laboratory section; and we
were interested in exploring interactive learning environments which encouraged
explicit development of hypotheses during fault solving by facilitating the com-
munication of the student’s ideas to the machine and enabling the machine to
critique them. From this motivation came the original SOPHIE I which pro-
vided the student an electronic troubleshooting environment. The instructor
can insert faults into the simulated circuit (using SPICE [6]) and the student,
through a natural language interface, make measurements to pinpoint the faulty
component. The SOPHIE project focused on troubleshooting DC power sup-
plies (an example of which is illustrated in Figure 1). The student was not
restricted to a few predetermined measurement points, but rather could make
any measurement he/she wanted. A fundamental advantage of using a simu-
lated over an actual circuit is that it makes it easy for the instructor to insert
any conceivable fault, not just those that are easy to insert in a physical circuit,
or those which do not destroy the entire circuit. SOPHIE I also includes exten-
sive pedagogical machinery and course material with which we do not concern
ourselves here.

In SOPHIE II we began to explore the idea of a computer-based trou-
bleshooting coach which could advise and guide the student’s actions with the
objective of improving their troubleshooting skills. Of the many ideas explored,
three bear on the current issue of diagnostic inference we are focusing on here.
First, we provided a module which was capable of expert-level troubleshoot-
ing of any fault; thus the student could observe an expert diagnosing a fault.
Second, we provided a module which would tell the student which faults could
explain the measurements made so far. Finally, we provided a module which
critiqued the student’s actual measurements. Although all of these capabilities,
on the surface, appear to require substantial inferential machinery, they were
all achieved by very simple underlying mechanisms.

2

The expert troubleshooting of SOPHIE II module is based on an underlying
decision tree. However, the decision tree is difficult to construct and must be
modified for each new circuit. The decision tree typically cannot accommodate
the measurements the student has already made. It cannot tell the student
what should be done next, but only what an expert would have done starting
from the outset. Finally, the decision tree cannot provide pedagogically useful
rationale for its decisions.

The fault identification module of SOPHIE II is more interesting. It is com-
pletely general, but is computationally intractable and therefore of limited use.
It uses SPICE in a novel way by adding all the observations to the equation set
being solved and systematically leaving each of the component parameters un-
specified. By employing SPICE in a root-finding loop SOPHIE II can identify
what component parameter shifts would explain the symptoms. For example,
R3 has a nominal value of 1500 ohms. By iterating SPICE runs we might de-
termine that if R3 were 50 ohms, then the results would be consistent with the
observations. Thus, R3 is a possible fault. On the other hand, if no resistance
value for R3 can be found that is consistent with the observations, then no fault
in R3 alone can explain the symptoms. This approach has two major disadvan-
tages. First, the technique is extremely slow (even for 1992 machines) and does
not scale well — the student doesn’t want to wait forever to have his question
answered. Second, this approach is incapable of explaining why a component
is or is not faulted in terms the student is familiar with. Thus, it is of limited
pedagogical value.

The measurement critiquing module is built on the fault identification mod-
ule. If a measurement did not significantly reduce the number of possible faults,
then the measurement is a poor one (but see discussion in Section 2.4). This
module suffered from similar problems as the fault identification module. First,
it is too computationally intensive. Second, it is incapable of explaining why
a particular measurement is good or bad. Third, if the measurement was bad,
then it is incapable of proposing a better one for the student to make.

1.1 SOPHIE III

In building SOPHIE III we decided to adopt a completely different approach
to achieving the required diagnostic inferences. Our approach was to base its in-
ference techniques on those that we observed experts and students using. This
allows SOPHIE III to provide explanations in terms the student is familiar
with. By making SOPHIE III’s inferencing strategies more akin to those used
by the student, we could begin to determine which deductions the student was
using, construct a model of his abilities, then use this model to generate ex-
planations in familiar terms. For example, SOPHIE III might discover that
the student repeatedly made measurements of both the current and the voltage
through resistors; this would be evidence that the student did not completely
understand Ohm’s Law.

We also needed a fundamentally different and more human-oriented inference
scheme because we wanted to investigate using SOPHIE III as a computer-

3

based consultant for on-the-job training as an intelligent job-performance aid.
We thus wanted SOPHIE III to be able to work from measurements being
performed on real, physical equipment, completely independently of any kind of
circuit simulator.

It is important to note that this paper is not about pedagogy or cognitive
science. Although we constantly refer to explanation and critiquing capabilities,
this does not at all suggest that the student should be immediately critiqued
or interrupted — that decision is the job of the coach. What we want to pro-
vide is a general inferential framework which is powerful enough to make the
necessary inferences and critiques — some other module based on some other
theory makes the ultimate decisions on whether the student should or should
not be interrupted and what should be said to the student with relatively few
measurements.

The remainder of this paper describes the inferential machinery necessary
to achieve the diagnostic objectives. The inferential machinery should:

• determine what other voltages and currents follow from the measurements
and be able to explain these conclusions in terms familiar to the student.

• determine the diagnostic consequences of a measurement (i.e., the com-
ponent faults that explain the symptoms) and to provide explanations for
these conclusions.

• given whatever the measurements the student has already made, rate the
measurements that the student can now make and provide explanations
for these ratings. Notice that by repeatedly picking the best measurement
the system can diagnose the circuit without the student.

• be as circuit independent as possible. We don’t want to face a large
knowledge engineering task every time we want to troubleshoot a new
circuit.

• be efficient and be able to provide its results to the coach in a timely
manner.

Although the concepts apply to both AC and DC circuits, at present SO-
PHIE III only models DC behavior. This is adequate for modeling simple
power supplies since they (except for switching regulators) can be understood
almost entirely from the quiescent point of view. The circuits consist of resis-
tors, diodes, zener diodes, capacitors, transistors, switches, potentiometers and
DC voltage sources.

There is an important class of inferences we were not able to incorporate
in SOPHIE III. In some situations, it is more informative to change the front
panel settings and then to make a measurement, than it is to make another
measurement under the current control panel settings. A student is always
free to change the front panel controls of the IP-28. SOPHIE III’s inferential
powers are sufficient to draw the conclusions from the information garnered

4

from various control settings. However, we did not develop good inferential
techniques for initiating changes to the front panel controls.

The typical knowledge engineered system has the advantage that it con-
trols the initiative (or it knows a priori what data will be given to it) on what
strategies and actions to take. The major question for such systems is whether
sufficient knowledge has been codified to handle all the cases that arise, while
the question for SOPHIE III is whether a sufficient amount of knowledge has
been codified to track any student. The student may make some very bizarre
measurements and SOPHIE III has to be prepared to comment on them and
make suggestions based on the information obtained by that potential poor
measurement even though it would have never made that measurement if it
had the initiative. Because the system does not have control over what infor-
mation it must reason with, it needs a deep understanding of electronics and
troubleshooting.

1.2 The architecture of the electronics expert

Symptomatic circuit behavior is caused by some component(s) failing to behave
as it was designed to. The task of troubleshooting is to identify the failing com-
ponent(s). The difficulty is that we usually cannot directly examine components
to see whether they are faulted, and instead must reason indirectly about their
behaviors. Troubleshooting proceeds by making measurements in the faulted
circuit and garnering as much information as possible from the results. The local
propagator (LOCAL) forms the basis for the electronics expert. It uses general
knowledge of circuit laws to determine what further voltages and currents can
be determined from the measurements that have been made. Because the local
propagator knows, for example, Ohm’s Law, it can deduce given the current
through a resistor what the voltage across it must be. In order for a measure-
ment to provide useful diagnostic information we must have some expectation
about its value. If nothing is known about the value, then no information is
gained by the measurement.

Consider the Ohm’s Law example again. Having measured the current
through the resistor, Ohm’s Law tells us what the voltage across it should be.
Having made this calculation it now makes some sense to make the measure-
ment of the voltage across the resistor. If this voltage is what we expected, then
we can be reasonably confident that there is nothing wrong with the resistor.
If this voltage is different than expected, then we know for certain that some-
thing is wrong with the resistor. SOPHIE III’s electronic expert is designed
around this fundamental idea that confirmations and refutations of predictions
pinpoint the faulty components. LOCAL consists of two interacting modules:
(1) a prediction module which predicts what other circuit quantities are known,
given the observations so far, and (2) an interpretation module which deter-
mines (using local propagation of constraints — hence the name LOCAL) of
the diagnostic consequences of confirmations or violations of predictions.

If some component is not behaving as it should, then the prediction module
will eventually encounter a irreconcilable contradiction since its model of the

5

circuit will differ from the actual faulty instance that is being debugged. Every
inference the prediction module makes implicitly involves some assumption (the
component is behaving as specified by its manufacturer) about a component or
piece of circuit wiring. In troubleshooting, these assumptions must be made
explicit. For example, given the voltage across a resistor, the current through
it can be easily deduced by assuming that its resistance is as specified—that
is not faulted. A contradiction is an informative event since it indicates which
assumptions are violated, narrowing the field of possible faulty components.

The cost incurred by this elegant scheme is that the inference mechanism of
the prediction module must always supply accurate and exhaustive justifications
and assumptions for all of its deductions. A single exception could render the
troubleshooter impotent for some classes of faults. To some extent this same or-
ganizational cleanliness is also demanded for generating coherent explanations,
but the added constraint of this troubleshooting scheme now necessitates that
the prediction module’s deductions be void of any hidden presuppositions.

A major complication stems from the fact that electronics (and electronic
troubleshooting) is a complex problem domain, part of which has been formal-
ized, part of which has not, especially in terms of the causal calculii tacitly
used by human experts. Because of the complexity, we were faced with ei-
ther restricting ourselves to formalized aspects of the domain or working out a
framework to systematically include the collection of ad hoc rules and inference
mechanisms needed for the poorly understood part of the domain. We chose
the latter course, and our strategy for building SOPHIE III was to encode as
much of the knowledge in the most general form possible.

The circuit-specific rules bridge between the prediction module and the in-
terpretation module. For example, one rule is: “If the output voltage is low,
then one of ... must be faulted.” The explanations of the circuit-specific knowl-
edge are supplied by the electrical engineer and are attached to each rule. In
contrast, explanations for deductions made from the generic electronic laws do
not presume any particular circuit and thus can be constructed from the steps
taken by the inference mechanism used to make the deduction.

The circuit-specific knowledge is aimed directly at those situations in which
the general knowledge fails. Because of its known limited context, circuit-specific
knowledge can be put in a canonical form, the number of ad hoc rules can be
minimized and the determination of whether enough circuit-specific knowledge
has been included to succeed is made much easier.

The circuit-specific knowledge is organized around a structural decomposi-
tion of the circuit. A circuit is a designed artifact, consisting of a collection of
weakly interacting modules. Each module is, itself, a circuit in its own right
and can be likewise decomposed. The modules behave cooperatively to produce
the behavior of the overall circuit. The key to the circuit-specific knowledge
is having terms to express the behavior of these modules. The circuit-specific
knowledge consists of rules about how the behaviors of modules affect the be-
haviors of other modules: Neighboring modules affect each other as well a being
influenced by the behavior of their lower-level, constituent modules.

Our objective in designing and using the circuit-specific rule system was not

6

to facilitate building rule bases for new circuits — although that was certainly
a subgoal. Our overall objective was to develop a thorough enough theory of
diagnostic reasoning to make LOCAL powerful enough to diagnose circuits
without using any circuit-specific rules at all. Therefore, we added rules only
when absolutely necessary.

We obtained a test suite of about 1000 troubleshooting scenarios of students
using SOPHIE I and SOPHIE II. For each fault and at each step of each of
the scenarios we used the brute force algorithm of SOPHIE II to identify the
faults which explained the symptoms. Using this database as a gold-standard,
we ensured that SOPHIE III was able to achieve the same, perfect, diagnostic
precision. For every one of the 50 rules required to perform the necessary
diagnostic inferences on the IP-28, there exists a scenario for which a fault
mode will fail to be eliminated without its presence.

Over the course of the project the number of circuit-specific rules both
increased and decreased. We constantly analyzed the set of circuit-specific
rules for patterns of inference which could be supported by extending LOCAL.
Whenever that occurred, the number of circuit-specific rules dropped dramat-
ically. Other times we would discover some pathological measurement order
that some student used which defeated LOCAL’s inferential capacity. Then
additional circuit-specific rules would be added.

If the goal of SOPHIE III had solely been to build a system to diagnose
the IP-28, then the rule set could be reduced to about a dozen. The additional
rules are required to glean information from sequences of measurements that
an optimal troubleshooter would never make (and therefore not needed in the
core dozen). Thus, if SOPHIE III were able to control which measurements to
make, then these rules would have been unnecessary.

In order to make it simpler to draw diagnostic inferences, SOPHIE III
makes a number of presuppositions:

1. The circuit contains a single fault.

2. Faults only occur in components; not in circuit topology.

3. All component fault modes are known.

4. The circuit is non-intermittent.

5. If a global symptom is observed (e.g., IP-28 output is lower than its front
panel controls indicate), then this is caused by some component presently
manifesting a symptom.

6. Only DC behavior is important.

7. All faults are equally likely.

8. All measurements are equally easy to make.

9. All fault modes are equally likely.

7

Module
Behaviors

Qualitative
Assertions

Voltages and
Currents

Inheritance

Production
System

Propagator

Behavior Tree

Rules

Component
Models

SOPHIE-electronic-expert

Deductions Inference
Engine

General
Knowledge

Figure 2: Electronics Expert

As SOPHIE III was primarily used in a simulated laboratory setting, we could
control the situation such that these presuppositions are almost never violated.
In real circuits, these presuppositions are easily violated. Some of these presup-
positions are re-examined in more detail in Section 6.1.

Three types of reasoning are involved in the electronics expert each with its
own knowledge structure, complete with inference mechanism and database (see
Figure 2). The propagation database contains quantitative voltage and currents
(e.g., output voltage is 30 volts) operating on by the propagator using the models
of the components. The qualitative database contains assertions about the
operating regions of the components, voltages, and currents (e.g., output current
is low, transistor Q5 is off). The database for the third knowledge structure,
the behavior tree, consists of the possible behavioral modes of components and
circuit modules (e.g., R5 is open, the current source is anemic).

The fundamental problem of intercommunication between different reason-
ing types is elegantly solved in SOPHIE III with a common language of justi-
fications and assumptions: Each deduction made by any of the reasoning types
simply records the reasons for and assumptions under which the deduction was
made. This justification/assumption database, just as in a general-purpose
truth-maintenance system, can be oblivious to the different kinds of reasoning
that underlie each deduction step.

2 The local propagator

The local propagator may appear simple, but the variety of subtle problems
with which it must grapple make it quite complex. The biggest obstacle is the
necessity for generality — it must deal with arbitrary measurements in arbitrary
circuits. But the profit we gain is great; because it is the only part of SOPHIE
III that has to reason upon the measurements and circuit topology directly.

The propagations caused by a single measurement can be quite deep. Con-

8

5 L / R13 R13 R / R13 9 R16

SOPHIE-current-limiter

B / Q6
Q6

C / Q6

E / Q6

11

Figure 3: A Current Limiter

sider the circuit described by Figure 3. Suppose we measured the current in
R13 to be 1 milliampere. Since the resistance of R13 is set at 100 ohms, the
voltage across it must be 0.1 volts. But the voltage across R13 is the same
as the voltage across the base-emitter junction of Q6. We know that a silicon
transistor conducts no current when the base-emitter voltage is less than .6
volts so the current flowing in each of the transistor terminals must be zero.
Now consider node N9 (we precede every node by “N”, so the node labeled “9”
on schematics is referred to as N9) which connects to R13, Q6 and R16. The
current flowing out of R13 and Q6 must be flowing into resistor R16 so the cur-
rent flowing through R16 is 1 ma. As just shown, a single measurement might
lead to the calculation of many other circuit values. LOCAL formalizes this “If
A = x, then B = y” kind of reasoning. It keeps records of each deduction so
that explanations can be generated and examined when troubleshooting.

Each component has an expert associated with it which constantly checks to
see whether the currents or voltages on its terminals are measured or calculated;
as soon as a value is discovered for one, it is used to deduce voltages and currents
on the others. Since the terminals and nodes are shared with other components,
these new currents and voltages in turn trigger other component experts. The
process continues until no new information can be determined.

Each propagation is recorded by constructing a justification which lists the
antecedents and a detailed description of the propagation itself. These descrip-
tions are kept in the following form:

(<type> <location> <reason> <assumptions>) = <value>.

<type> is either “V” or “I.” <location> (for location) is a pair of nodes for a volt-
age, a terminal for a current. The circuit consists of components whose terminals
are joined at nodes. Since terminals, unlike nodes, are always attached to com-
ponents we adopt the convention of labeling them by <terminal-type>/<component>.
Currents are normally associated with terminals, voltages with nodes. In Fig-
ure 3, L/R13, R/R13, B/Q6, E/Q6, and C/Q6 are terminals, and N5 and N9 are

9

nodes. <reason> describes how a component expert computed the propagation
and its form varies by component type. <assumptions> is a list of components
which must be working correctly to produce this propagation. This list is con-
structed by adding the component (if any) to the union of the assumptions of
all the antecedents to the propagation.

The resistor, one of the simplest component types, obeys Ohm’s Law. If
LOCAL determines the voltage across the resistor from the current through
it (via v = iR), then the <reason> for the propagation is the pair (RESISTORI

<resistor>). Conversely, if the current is determined from the voltage (via
i = v

R), then the pair is (RESISTORV <resistor>).
Our example (Figure 3) proceeds as follows:

(I R/13 (MEASUREMENT) ()) = .001

The current in terminal R/R13 is measured to be 1 milliampere.
(V (N5 N9) (RESISTORI R13) (R13))=.1

The voltage across the resistor is determined from the current through
it by an instance of Ohm’s Law (abbreviated RESISTORI). This propa-
gation assumes the resistance of the resistor (set at 100 ohms) has not
changed and thus the assumption R13 is added to the <assumptions>.

The next propagation is (we discuss transistors in more detail later):
(I E/Q6 (TRANOFF Q6) (Q1 R13)) = 0

The voltage across the base-emitter junction of Q1 indicates it is off
and therefore conducting no current.

The simplest propagations are those involving Kirchoff voltage and current
laws. Kirchoff’s current law states that the sum of all the currents flowing into
a node must be zero. Therefore, if all but one of the terminal currents of a com-
ponent or node are known, then the remaining one can be deduced. Therefore,
in our example we can now propagate (Kirchoff’s voltage law propagations are
given the <reason> (KCL <component-or-node>)):
(I L/R9 (KCL N9) (R13 Q6)) = -.001

The current in terminal L/R9 is determined to be -.001 milliamperes
by using Kirchoff’s current law (abbreviated KCL) to node N9.

(V (N9 N11) (RESISTORI R16) (R16 R13 Q6)) = .0005

Kirchoff’s voltage law states that the sum of the voltage differences around a
collection of nodes must be zero. This allows the deduction that if two voltages
are known relative to a common point, the voltage between the other nodes can
be computed. Kirchoff’s voltage law propagations are given the <reason> (KVL

<node1> <node2> <node3>). For example:

(V (N5 N11) (KVL N5 N9 N11) ()) = .1005

The voltage from node N5 to node N11 is calculated by Kirchoff’s voltage
law (abbreviated KVL) by summing the voltage from N5 to N9 with the
voltage from N9 to N11.

LOCAL’s propagation machinery is implemented by a collection of experts
one for each component type as well as ones for KCL and KVL. Every propaga-
tion step which introduces no new assumptions is executed immediately. Thus,

10

Component Operating regions
Diode ON, OFF
Zener Diode ON (at breakdown), OFF
Transistor ON, OFF, SATURATED-ON, SATURATED-OFF

Table 1: Component operating regions.

KVL is immediately executed whenever any new voltage is discovered. Like-
wise, KCL is immediately executed whenever any new current is determined.
The component experts are invoked in a breadth-first manner with the use of
a queue. Thus, the response to a new measurement is as follows. First, KCL
or KVL is run on the new measurement. Then, the new measurement and any
deductions which follow from KVL and KCL form the initial queue. At each
cycle of the propagation, LOCAL removes a propagation from the queue and
invokes the applicable component experts on it. If any of these experts produce
new currents or voltages, then KCL and KVL are immediately invoked and the
propagations placed on the queue. This propagation cycle continues until the
queue is empty2

2.1 Component experts

LOCAL has an expert for each type of component it models. These experts are
based on the mathematical electrical engineering models, but are implemented
with the propagation scheme outlined in the previous section. Each component
of a given type must be modeled in the same way. If, for example, one transis-
tor in the circuit were modeled differently from the others without there being
some significant physical difference in the transistors, then the modeling would
have presumed the functionality of the overall circuit. Presuming the function-
ality of a circuit is particularly dangerous for a troubleshooting system because
a fault may so modify the circuit as to significantly change its functionality.
Presupposing functionality would also bias LOCAL’s deductions to assume the
circuit functioned correctly. Of course, different components will be connected
to different nodes and thus respond to different voltages and currents, but given
these differences and individual differences in component parameters (e.g., the
resistance of a resistor) each component must modeled by the same prototypical
expert.

Transistors, diodes, and zener diodes have multiple operating regions. Each
region is characterized by a distinct behavior and the region usually needs to be
identified before any values can be propagated. Table 1 enumerates the possible

2The actual implementation needs to be careful to avoid duplicate propagations. For
example, any propagation produced by a component expert should not immediately be applied
to the same component as the result is guaranteed to be redundant. LOCAL enforces a more
general version of this condition by not allowing any component expert to run if any of the
triggering propagations depend on the component already (this is easily checked through a
membership test on the <assumptions>).

11

component regions. Note that this model of a transistor does not completely
conform to the traditional one which has only one SATURATED mode, but
it makes certain deductions more convenient. ON and OFF are determined
from collector current only. SATURATED is determined from the collector-
base voltage only. While ON and OFF are exclusive states, a transistor can be
SATURATED and ON, or SATURATED and OFF.

The diode is the simplest kind of semiconductor device. Its model is very
simple: when it is reverse-biased (current can flow in only one direction through
a diode), the current through it must be zero:

(I D (DIODEV) (D)) = 0.

From the zener diode we know that if the current through it is greater than
some threshold, then the voltage across it must be at its breakdown voltage:

(V Z (ZENERI) (Z)) = ...

Conversely if the voltage across the zener diode is at less than its breakdown
voltage, then the current through the diode must be zero:

(I Z (ZENERV) (Z)) = 0.

The transistor is the most difficult component to model. This is both because
it has the discontinuous characteristics of a semiconductor component, and be-
cause it is a three-terminal component. If the current through any one of the
terminals is known, then the current through the other two can be determined
using the gain characteristics of the component:

(I C/Q1 (BETA Q1 B/Q1) (Q1)) = ...

The collector current of Q1 is deduced by applying its gain to the base
current (iC = βiB)

Furthermore, if the voltage across the base-emitter junction is less than some
threshold (.55 volts for silicon transistors), then the current flowing through any
of its terminals should be zero:

(I C/Q1 (TRANOFF Q1) (Q1)) = ...

Consider the fragment of the IP-28 illustrated in Figure 4. Suppose voltage
measurements at the output and across D5 have just been made:

(V (N15 N14) (MEASUREMENT) ()) = 30
(V (N16 N14) (MEASUREMENT) ()) = 34

The following propagations ensue. For brevity, currents in two-terminal com-
ponents are simplified to refer to the component instead of the terminal.

(V (N16 N15) (KVL N16 N14 N15) ()) = 4
(I R5 (RESISTORV R5) (R5)) = 0.003
(I D5 (ZENERV D5) (D5)) = 0.

12

24 25 26
10V

R5 R4 R3 D3
1500Ω

1W
2200Ω

1W
1225Ω

+
36V
-

D5
36V

14

C1
100µ
200V

T2

72 VAC

SOPHIE-constant-voltage-N15

15

16

+
 56V
-

D4
 56V

Figure 4: Constant Voltage Reference

The voltage across the zener D5 is less than its breakdown, therefore
the current through it must be zero.

(I R4 (KCL N16) (R5 D5)) =0.003
(V (N24 N16)(RESISTORI R4) (R4 R5 D5)) =7.18
(V (N24 N14)(KVL N24 N16 N14)(R4 R5 D5)) =41.18
(V (N24 N15)(KVL N24 N16 N15)(R4 R5 D5)) =11.18
(I D4 (ZENERV D4) (D4 R4 R5 D5))=0.

The voltage across zener D4 is less than its breakdown.

(I R3 (KCL N24) (D4 R4 R5 D5)) =0.003
(V (N24 N25)(RESISTORI R3) (R3 D4 R4 R5 D5))=4.90
(V (N25 N14)(KVL N25 N24 N14)(R3 D4 R4 R5 D5))=46.1
(V (N25 N16)(KVL N25 N24 N16)(R3 D4 R4 R5 D5))=12.01
(V (N25 N15)(KVL N25 N24 N15)(R3 D4 R4 R5 D5))=16.01.

More will be said concerning the component experts later.

2.2 Coincidences, conflicts and corroborations

In addition to simple propagation, two other activities are required to trou-
bleshoot. Passive troubleshooting interprets the results of the propagations to
draw conclusions about the correctness of components. Active troubleshooting
chooses new measurements to make. Passive troubleshooting knowledge is incor-
porated into LOCAL as an extension of the propagator. Active troubleshooting
is discussed in Section 2.4.

The discovery of a value for a circuit quantity for which we already know a
predicted, propagated value is called a coincidence. When the two propagations

13

have the same values, we call the coincidence a corroboration; when they differ
we call it a conflict. Coincidences provide information about the assumptions
made in the propagation: Corroborations verify them and conflicts indicate at
least one of them is in error.

Continuing the example of the previous section, consider what we would
learn if we measured the voltage between nodes N15 and N25 to be 20 volts
instead of the predicted 16.01 volts. This conflict indicates that one of the
assumptions underlying the prediction is violated: One of (R3 D4 R4 R5 D5) is
faulted. (Sets of assumptions underlying conflicts are called nogoods.) Suppose
we instead measured the voltage between N15 and N25 to be the predicted 16.01
volts. In this case we can be assured that R3, D4, R4, R5 and D5 are working
correctly. (Sets of assumptions underlying corroborations are called goods.)

Although a component is faulted, the overall system may still be functioning
correctly. (The fault may only manifest itself under certain load conditions, for
example.) Therefore a corroboration provides no information if the system is
not manifesting a symptom under the specified external conditions (e.g., load
and control settings). To facilitate this deduction, LOCAL maintains a special
flag which indicates whether the circuit is violating its overall function.

Any troubleshooting scenario produces a number of conflicts and coinci-
dences. Each of the conflicts leads to a nogood, and each of the coincidences
leads to a good. Under the presupposition that the circuit contains at most one
fault, each component not mentioned by any nogood must be unfaulted. This
observation reduces the set of possibly faulty components to the intersection
of all the nogoods. In addition, any components appearing in any corrobora-
tion must also be removed from this final set. Equivalently, the set of possibly
faulty components is the intersection of all the nogoods and the complements
of all the goods. Intuitively, a component is possibly faulted if its removal from
the circuit would remove every conflict while maintaining every corroboration.
When there are multiple faults these concepts must be generalized. Although a
nogood indicates that at least one of its assumptions is faulted, the other faults
may lie outside the nogood and cannot be immediately verified. Corroborations
involving only one unverified component always guarantee the component is ok.
However, corroborations involving more than one component may be caused by
multiple faults canceling each other.

2.3 Representing propagations

So far we have been describing LOCAL as if every circuit quantity has only one
propagation associated with it. However, LOCAL maintains a set of propaga-
tions for each circuit quantity. These propagations are distinguished by their
value and their underlying assumptions. LOCAL does not select out one of
the values to propagate further, but propagates all values. Two conventions
help control the proliferation of propagated values. First, if the assumptions
underlying a propagation are a superset of a nogood, then that propagation’s
value is known to be invalid and is discarded. Second, if two propagations have
identical values and the assumptions of one propagation is a proper subset of

14

the other, then the propagation with the larger assumption set is discarded.
One of the consequences of these observations is that there can be relatively

many coincidences. Suppose some measurement produces a conflict with a long
propagation chain. After the conflict has been processed, the measurement
will likely propagate to produce another conflict earlier in the long propagation
chain. These coincidences between propagations are usually redundant and
produce no new information. However, there are a few important circumstances
where they do, so they all have to be processed. Because LOCAL does not
use symbolic algebra but only propagates numeric quantities it is not logically
complete. As a consequence of this incompleteness, a new measurement may
not produce an initial coincidence, but propagations caused by it do (this is
illustrated later in Table 3).

In the worst case, if a circuit contains n possible faults, then each circuit
quantity can have up to n distinct propagations associated with it. For example,
if the only possible faults are A, B, C and D, then a quantity could have 4
propagations with different values depending on the assumption sets: {A,B,C},
{A,B,D}, {A,C,D} and {B,C,D}. The nogood produced by the union of any
two of these sets is always the set of all faulty components, {A,B,C,D}, so
provide no new information. Fortunately, this case does not commonly arise in
practice. Usually there are no more than two propagations associated with each
circuit quantity.

The effect of conflicts and corroborations between propagations is as follows.
Suppose coinciding propagations A and B have underlying assumption sets PA

and PB (e.g., the two propagations predict the same value for the same circuit
quantity under differing assumptions). A conflict yields a nogood PA ∪ PB .
A corroboration yields the good PA ∪ PB − [PA ∩ PB]. The intuition is as
follows. A fault lying in the intersection of the antecedent assumptions could
result in both propagations being incorrect yet corroboratory so these cannot be
verified. Consider the remaining assumptions. Suppose that some component
C ∈ PA − PB is faulted. Propagation B must be correct because it does not
depend on C. On the other hand as C contributes significantly to propagation
A, therefore its value must deviate significantly from the correct value. As the
coincidence was a corroboration and not a conflict this cannot occur. Hence
C is unfaulted. Notice that the combined effect of a corroboration between
two propagations is to remove from either propagation any assumptions not in
common. For example, if {X,Y } underlies propagation A, and {Y,Z} underlies
corroborating propagation B, then X and Y are eliminated with a result that
both A and B become essentially identical and depend on Y alone.

In the course of troubleshooting the student can change the front panel
settings. As we presume the circuit is non-intermittent and the fault doesn’t
change, the nogoods and goods obtained from different control settings can be
combined as usual. However, it is important to keep the propagations distinct.
Therefore, for every front panel settings, LOCAL creates a dummy assumption
which is added to every measurement made under those settings. Coincidences
between propagations obtained under different settings are ignored, and dummy
assumptions are removed from all goods and nogoods. However, for simplicity,

15

Measurement Conflict Corroboration Score
Eliminates Eliminates

(V (N16 N15)) impossible 0
(I R5) R3,D4,R4,D5 R5 1.6
(I D5) R3,D4,R4,R5 D5 1.6
(I R4) R3,D4,R4 R5,D5 2.4
(V (N24 N16)) R3,D4 R4,R5,D5 2.4
(V (N24 N14)) R3,D4 R4,R5,D5 2.4
(V (N24 N15)) R3,D4 R4,R5,D5 2.4
(I D4) D4,R4,R5,D5 R3 1.6
(I R3) D4,R4,R5,D5 R3 1.6
(V (N24 N25)) impossible 0
(V (N25 N14)) impossible 0
(V (N25 N16)) impossible 0
(V (N25 N15)) impossible 0

Table 2: Proposed measurements

we do not discuss these dummy assumptions further in this paper.

2.4 Active troubleshooting

The goal of troubleshooting is to remove as many components from suspicion as
efficiently as possible. Thus, the quality (score) of a potential measurement is
the expected number of components that it would remove from suspicion. The
higher the score, the better the measurement. LOCAL computes these scores
for every circuit quantity having a propagated value. Suppose a circuit quantity
has exactly one propagation. The expected value is the sum of two products:
the number of components that would be verified by a corroboration times the
probability of a corroboration, plus the number of components that would be
verified by a conflict times the probability of a conflict.

In the following analysis we presume that we have determined the circuit has
a symptom and that the faulty behavior is due to some, as yet undetermined,
single fault. Suppose there are n components under suspicion and p unverified
components underlying a particular propagation. We assume that every com-
ponent is equally likely to fail. Therefore, the probability that the propagation
is faulty is p

n which will produce a nogood of size p thereby verifying the re-
maining n − p components. The probability that the propagation is correct is
1 − p

n which will produce a good of size p. Combining both contributions we
find that the expected number of components verified by the measurement is:

p

n
× (n− p) + (1− p

n
)× p,

16

which simplifies to:
2p(n− p)

n
.

The best possible score is always half the number of components currently under
suspicion.

Suppose we have measured the current and voltage of resistors in series and
determined that one of the resistors is faulted. The familiar half-split method
would propose a measurement midway within the resistor network. Our scoring
function, which is maximum at p = n

2 , proposes the same measurement. More-
over, our scoring function applies even when the circuit has a complex topology
for which it is not obvious how to apply the conventional half-split method.
Notice that if there are always measurements available with p = n

2 , then the
fault is always isolatable in log2 n measurements.

Consider the example of the previous section (Figure 4). The following is
an simplified example of SOPHIE III troubleshooting this circuit fragment.
Suppose that the only possible faults are R3, D4, R4, R5 and D5 and that the
actual fault is that D4 has its breakdown voltage too low and thus is drawing a
great deal of current. The possible points to measure and their scores are listed
in Table 2.

The table shows the best measurement to make is one of (I R4), (V (N24

N16)), (V (N24 N14)) or (V (N24 N15)). The current through R4 is measured
and produces a corroboration. Therefore R5 and D5 are verified to be correct
and one of R3, D4 or R4 must be faulted. This leaves 5 interesting places
to measure: (V (N24 N16)), (V (N24 N14)), (V (N24 N15)), (I D4)), or (I R3).
(For brevity we do not show to revised scores.) Suppose we measure the current
in D4. As D4 is shorted it draws a great deal of current. Thus, this produces
a conflict whose nogood is (R4 D4). Thus R3 is verified. The two possible
faults are now that R4 could be faulted high or D4 faulted low. Any of the
measurements (V (N24 N16)), (V (N24 N14)) or (V (N24 N15)) isolate the fault
to D4.

The objective is to localize the fault as quickly as possible on average. No-
tice that the student can make a very poor measurement which yields a lot
of information. Consider an extreme example. Suppose there are 40 unveri-
fied components. Suppose one quantity has a propagation with 20 underlying
assumptions and another quantity has a propagation with 1. Suppose the stu-
dent makes the second measurement which turns out to be a conflict and thus
instantly identifies the fault. The student should be critiqued for his poor mea-
surement because it was very improbable that the outcome of this measurement
would produce a conflict — far more likely it would have produced a corrobo-
ration which would only have eliminated one component. The student was just
lucky, since the expected value of that measurement was low. The expected
number of components eliminated by the first measurement is 20, while the
expected number of components eliminated by the second measurement is 1.95.

The scoring function may yield a large number of good places to measure,
many of which are topologically distant from the suspect components. This
occurs because there can be long propagation chains through components which

17

have been verified. Therefore, when SOPHIE III is asked by the student to
propose a next measurement, it returns a measurement with highest score but
which also depends on the fewest number of verified assumptions. The fewer
the number of verified components the propagation depends on, the closer it
is topologically to the suspect components and therefore more intuitive to the
student.

A circuit quantity may have many propagations associated with it. The
more propagations a circuit quantity has the better its score can be. Reconsider
the previous example where a quantity has 4 conflicting propagations with as-
sumption sets: {A,B,C}, {A,B,D}, {A,C,D} and {B,C,D}. Measuring this
quantity will immediately identify the faulty component as there is a one-to-one
correspondence between faulty components and values. In general, in order to
determine the score of a multi-propagation quantity, careful analysis of the as-
sumptions underlying the propagations must be made to determine the degree
to which the propagations are independent. However, there are many other
effects which influence the score of a tentative measurement (see Section 4.2).

2.5 Primary and secondary assumptions

This strategy of exploiting conflicts and corroborations to localize the faulty
component forms the essential core of LOCAL’s troubleshooting strategy. Un-
fortunately, in practice, we have to make an additional caveat as this idealistic
framework is inadequate.

The circuit may be exhibiting a symptom, but the way the faulted com-
ponent causing the symptom is used in a particular propagation may not be
significant. A component contributes significantly to a propagation if a fault in
the component would produce a value sufficiently different from the one prop-
agated that it would be detected. Therefore, LOCAL partitions the set of
assumptions associated with each propagation into a primary and a secondary
set. Primary assumptions contribute significantly, while secondary assumptions
may or may not contribute significantly. Thus, when a corroboration occurs
only the components named by the primary assumptions are eliminated. The
components of the secondary assumptions cannot be eliminated because we
cannot guarantee the value is sensitive to a fault in them. Therefore, LOCAL
must ensure that assumptions are primary only if they significantly impact the
propagation’s value.

Unless overridden by some exception, every component expert’s assumption
is primary and the secondary(primary) assumptions of the propagation include
the union of all the secondary(primary) assumptions of the antecedents. Some
of the exceptions to this general rule are:

• When a large quantity is added to a small quantity the smaller quantity
may vary significantly without affecting the sum. The primary assump-
tions of the smaller quantity are secondary in the sum.

• When a quantity is multiplied by zero, the assumptions of the non-zero
quantity become secondary.

18

• In a propagation which uses the same component twice, two effects may
cancel each other out. Therefore, whenever two antecedents share a com-
mon assumption, this assumption is made secondary for the ensuing prop-
agation.

• The assumptions underlying a comparison must become secondary. If the
base-emitter voltage of a transistor is below 0.55 volts, then the collector
current is 0 amps. If the collector current is measured to be 0, this does
not guarantee that the base-emitter voltage was correct because it could
be wildly incorrect but just less than 0.55 volts. As we need to err on the
conservative side, the assumptions must therefore become secondary.

In all cases the primary and secondary assumptions cannot overlap and all
secondary assumptions are always removed from the primary set.

Consider a coincidence between a measurement and propagation. If the
coincidence is a conflict, then the fault must lie in the union of the primary and
secondary assumptions (the nogood set). If the coincidence is a corroboration,
then all the primary assumptions are eliminated (the good set).

The general case is as follows. Suppose the primary and secondary assump-
tions underlying the two coinciding propagations are PA, PB , SA and SB . If the
coincidence is a conflict, then we have a new nogood: PA∪PB ∪SA∪SB . If the
coincidence is a corroboration, then we have a new good: PA ∪PB − [SA ∪SB ∪
(PA ∩ PB)]. The reasoning is analogous to that of the previous sections, except
that secondary assumptions should never be verified by a corroboration. As a
consequence of the newly discovered good, each of the corroborating propaga-
tions will propagate onward with their primary non-intersecting assumptions
eliminated (just as before in Section section:Propagations).

It is important to control the proliferation of propagations as the intro-
duction of the distinction between primary and secondary assumptions causes
additional propagations. Consider a corroboration in which PA = {X}, SA =
{Y, Z}, PB = {Z}, SB = {X,Y }. Without the distinction between primary and
secondary assumptions one of these propagations would be discarded. Now,
both must be propagated. To control the proliferation of propagations, LOCAL
removes all propagations subsumed by others. For example, if PA ⊂ PB∪SB and
SA ⊂ SB , then propagation B is discarded because little additional diagnostic
information can be obtained by propagating it further.

3 Ranges

All measurements in the circuit and all circuit parameters have some degree of
error. The errors in circuit parameters originate from the fact that manufactur-
ers cannot make perfect components and instead guarantee their specifications
to within certain tolerances. (Typically the resistance of a resistor is only within
10 % of its specified value.) Similarly, the meter used to measure circuit quan-
tities can only measure voltages and currents to certain accuracies (typically 2

19

Location Reason Primary Secondary
Assumptions Assumptions

(I C/Q2 (MEASUREMENT) () ()) = [.00017 .00019]
(I B/Q2 (BETA Q2 C/Q2) (Q2) ()) = [1.1E-6 3.8E-6]
(I E/Q2 (BETA Q2 C/Q2) (Q2) ()) = [-.00019 -.00017]
(V (N2 G) (MEASUREMENT) () ()) = [45 49]
(I R9 (RESISTORV R9) (R9) ()) = [.012 .017]

->(I C/Q1 (KCL N2) (R9) (Q2)) = [.012 .017]
(I B/Q1 (BETA Q1 C/Q1) (Q1 R9) (Q2)) = [8.1E-5 33E-5]
(I E/Q1 (BETA Q1 C/Q1) (Q1 R9) (Q2)) = [-.017 -.012]
(I R11 (KCL N3) (Q1 R9) (Q2)) = [-.00015 .00011]
(V (N1 N3) (RESISTORI R11) (Q1 R9 R11) (Q2)) = [-.26 .18]

->(I C/Q1 (TRANOFF Q1) (R11 Q1 R9) (Q2)) = [-1.E-6 4.0E-5]

Table 3: Propagation trace for R11 high. The conflicting propagations are
highlighted.

% error). A further limitation is that the meter has a minimum range; SO-
PHIE’s meter cannot accurately measure below .1 volt or below 1 µA. These
effects, though artificially introduced into SOPHIE, are representative of what
is encountered in real circuits. Because the numerical computations performed
by the component experts introduce truncation and roundoff errors, it makes
more sense to propagate either values and their tolerances, or ranges of values.
Consequently, all the basic arithmetic operations performed by LOCAL are
modified to accommodate the tolerances associated with each circuit quantity.

LOCAL represents each quantity by a range indicating its extreme values
(which may be +∞ or −∞). A quantity Q is described by [QL, QH] which
indicates QL ≤ Q ≤ QH . No probability distributions are maintained. Consider
an example. If we know the current through a resistor is between 2.9 amperes
and 3.1 amperes (I = [2.9, 3.1]), and its resistance is 100 ohms with a 10%
tolerance (R = [90, 110]), then Ohm’s Law tells us that the voltage across the
resistor must be between 261 and 310 volts (V = IR = [2.9, 3.1] × [90, 110] =
[261, 341]).

Suppose R11 of the IP-28 has a higher resistance than specified. The result-
ing propagation trace is illustrated in Table 3. Each propagation includes two
lists of assumptions; the first are the primary assumptions and the second the
secondary assumptions. This propagation sequence illustrates two additional
interesting properties. First, a coincidence arises between two propagations nei-
ther of which is a measurement. Second, an assumption becomes secondary
because a small range is added to a large one. Careful analysis of the trace il-
lustrates that this propagation would be much simpler if we added information
about maximum base currents. We discuss this issue next.

By using range notation, a great deal of additional knowledge can be included
in the component models. For example, knowledge that the current through a
diode is always positive can be expressed by the range [0,∞]. A silicon transistor
in the ON state must have a base-emitter voltage of [.55 , 1]. Components
have certain maximum limits which cannot be exceeded without destruction.
For example, a current of 2 amperes through diode D6 well exceeds its rating,

20

indicating that either it is shorted, or the 2 ampere propagation is incorrect
and one of the underlying assumption used in its derivation has been violated.
Suppose the base-emitter of a two-transistor darlington pair (such as Q3 and
Q4 of the IP-28) measures greater than 2 volts. Neither of the individual
base-emitter drops are known. If the database is initialized with a [−∞, .7]
drop for each base-emitter junction the 2 volt measurement would conflict with
the [−∞, 1.4] volt propagation and the problem will have been localized to
the darlington. Before any measurement is ever made, LOCAL propagates
all minimums and maximums. Thus, when a circuit quantity is discovered to
exceed some limit, a conflict is triggered.

Ranges also admit a third kind of innovation. Sometimes we would like a
component model to propagate a range with different explanations for each end
of the range. This can be accomplished as follows. Instead of propagating [a,b],
we propagate two ranges: [−∞, b] and [a,+∞] each with its own justification.

If all voltage and current sources in a DC circuit are known, then absolute
limits for all voltages and currents can also be determined from basic principles.
For example, suppose the current through a 2 MΩ resistor is propagated to be
.5 ma. The resistor model propagates the voltage across it as 1000 volts by
Ohm’s Law. No problem is detected since the resistor can operate at 1000 volts
and the .5 watts that it is dissipating falls within its rating. If this resistor were
part of a low-voltage power-supply such as the IP-28, then there could be no
possibility that any voltage inside of it was 1000 volts. If this measurement
turned up either the resistor would be shorted or the propagation of the .5 ma
would be incorrect.

Primary and secondary assumptions play the same role as before. The basic
intuition is that an assumption p is primary to a propagated value with range v,
if every fault in p causes the actual circuit value to be outside of v. As we see in
a moment, this distinction is important because if a later measurement is within
v, then we can be guaranteed that p cannot be faulted. Thus, an assumption is
primary if |∂v∂p | >

wv

wp
where wv is the width of v’s range and wp is the tolerance

of the component. As this condition is difficult to guarantee, LOCAL always
errs to the conservative side, making assumptions secondary unless it can be
definitely determined that they are primary.

3.1 Consequences of ranges on coincidences

A comparison between ranges A and B can have one of five outcomes (see
Figure 5): (1) values conflict, (2) values corroborate, (3) A splits B, (4) B splits
A, and (5) no comparison possible. The comparison procedure first attempts
to determine whether the ranges corroborate. A tolerance for the comparison
is computed by choosing the minimum width if the widths are very different
and choosing half the width if the widths are approximately the same. If the
width of either range is ∞, then the coincidence cannot be a corroboration.
Depending on the circuit and whether the coincidence is between voltages or
currents, a minimum tolerance is chosen. The minimum tolerance for a typical
circuit is .1 µA and .1 volts. Then the differences between the corresponding

21

� -
−∞ +∞

CONFLICT A : []
B : []

CORROBORATION A : []
B : []

A SPLITS B A : []
B : []

B SPLITS A A : []
B : []

INCOMPARABLE A : []
B : []

Figure 5: Range Comparisons

ends of the ranges are determined. If both differ within the tolerance, then the
values are determined to be corroboratory. For example, [.1 , .2] volts and [.15
, .3] volts are judged to be corroboratory. If only one side is within tolerance
the tolerance is relaxed by 50% and the failing side is checked again. This ad
hoc rule worked well for all our examples.

If this still does not match, then we cannot really claim a corroboration;
instead we can only say that one value splits the other. For example, [0 , 1] splits
[0 , 10]. The two remaining cases occur when the values are completely disjoint
(e.g., [0 , 1] and [3 , 4]) and when one contains the other (e.g., [0 , 6] and [3 , 4]).
The containment case is treated as a split. Ranges are considered disjoint only
if they differ by greater than the tolerance. If none of these conditions are met,
then the coincidence is neither a corroboration nor a conflict. For example, [0 ,
.1] volts and [.2 , .3] neither contradict nor corroborate.

Conflicts and corroborations produce the same goods and nogoods as in the
non-range case. We can also draw useful conclusions from the splitting case.
Let PA, PB , SA, SB the primary and secondary assumptions of A and B. If A
splits B, then we have the new good PB− [PA∪SA]. The rationale is as follows.
If the range for A splits the range for B and therefore are subsets, then if A
is valid (i.e., must include the actual circuit value), then B must be valid. For
example, since A:[3 , 4] splits B:[0 , 10], the validity of A implies the validity
of B. Consider some possibly faulted component of PB . By definition, this will
cause the actual value of B to be outside of its current range, and of necessity,
conflict with A’s current range. If C doesn’t contribute A, then by the single-

22

fault assumption A’s range is correct. Therefore, any failure in C would have
caused a conflict and not a split and therefore C cannot be faulted. Notice that
the notion of corroboration is now redundant — a corroboration of A with B
as the same effect as simultaneously splitting A with B and B with A.

When the coinciding values are incomparable, LOCAL synthesizes a new
propagation which combines them. The range of the synthesized propagation is
the intersection of the two ranges (if the intersection is empty, the new propaga-
tion is not constructed). The primary assumptions of the syntesized propagation
are the union of the primary assumptions of the antecedents. The secondary
assumptions of the synthesized propagation are the union of the secondary as-
sumptions of the antecedents, with the primary assumptions removed. This
synthesized propagation is usually propagates further than its antecedents as it
has a smaller width.

As ranges allow one to express far more information than before, there are
now typically many propagations per circuit quantity. LOCAL incorporates
a variety of tactics to reduce the number of propagations. Propagations with
very wide ranges are arbitrarily stopped. New values which are only marginally
better (only marginally narrower ranges) than old ones are ignored since they
probably are the result of iteration. Kirchoff’s Voltage Law produces so many
propagations and voltages between nodes of no interest that all KVL deductions
are performed by a separate module which in one step produces the best value
for all interesting voltages. Finally, subsumed propagations are discarded. Prop-
agation A subsumes propagation B if the primary and secondary assumptions
subsume each other as in the non-range case, and if the range of propagation A
corroborates or splits the range of propagation B. Subsumed propagations are
removed after all the fault information has been extracted from the corrobora-
tion.

3.2 The model for a diode

Although every component of a given type behaves in the same basic way, the
fine details of its behavior are controlled by its parameters. These parameters
are determined by the manufacturer, not by the component’s use in the circuit.
For example, every resistor obeys Ohm’s Law, but with varying resistance. Each
of LOCAL’s component models is complicated and lengthy and there is no point
in giving every one of them in this paper. Instead, we only describe the diode
as it is the simplest non-linear device. The transistor model, in contrast, is
dramatically more complicated.

The model for the diode is specified by eight parameters, each parameter is
listed with its value for D6 of the IP-28:

23

Voltage

OFF

-50

Vmin VoffVon Vmax
ON

 0.3 0.45 0.8

SOPHIE-diode-voltage

Figure 6: Diode Voltage Parameters

IMIN : maximum reverse current flow, −1 µA.
IMAX : maximum forward current flow, 1 A.
VMIN : minimum voltage across the diode, −50 V.
VMAX : maximum voltage across the diode, .8 V.
IOFF : defines the diode OFF state, 1 µA.
ION : defines the diode ON state, 2 µA.
VOFF : defines the diode OFF state, .3 V.
VON : defines the diode ON state, .45 V.

IMIN , IMAX , VMIN , VMAX are all limits beyond which D6 would be destroyed.
IOFF , ION , VOFF , VON help specify the operating regions of the diode.

The maximum limits are propagated before any measurement is ever made.
Thus, LOCAL immediately propagates [IMIN ,IMAX] with secondary assump-
tion D6. If the current is propagated (or measured) to lie outside this range,
then a conflict is triggered. For example, this allows LOCAL to deal with
diodes in series. If the voltage across two diodes is measured to be greater than
2VMAX , for example, LOCAL immediately detects that one of the two diodes
is open. Note that a corroboration can never verify D6, both because it is only
a secondary assumption of the initial propagation and the range widths are too
wide.

If a newly discovered voltage is less than the threshold required to turn on
the diode, then the diode cannot be conducting much current; on the other hand,
if the new voltage indicates the diode is on, then the diode must be conducting
a significant amount of current (see Figure 6). As the maximum and minimum
limits imposed by the diode are propagated before any measurement is taken,
we do not include them in these models:

A new voltage V = [VL, VH] causes the propagation: If
VH ≤ VOFF , then propagate the range I = [−∞, ION],
otherwise if VL ≥ VOFF , then propagate the range
I = [ION ,+∞].

(Note that we could not even express this rule without ranges.)
The propagations which result from a new current are analogous (see Fig-

ure 7):

A new current I = [IL, IH] causes the propaga-
tion: If IH ≤ IOFF , then propagate the range V =
[−∞, VOFF], otherwise if IL ≥ ION , then propagate
the range V = [VON ,+∞].

24

Current

ON
I min I off I on I max

OFF

SOPHIE-diode-current

1Aµ2 Aµ1 A µ-1 A

Figure 7: Diode Current Parameters

Type Fault Modes
RESISTOR open, shorted, high or low
CAPACITOR shorted or leaky
DIODE open or shorted
ZENER DIODE breakdownhigh or breakdownlow
TRANSISTOR ok/op/op, op/op/ok, op/ok/op, op/op/op, op/sh/op, op/op/sh,

sh/op/op sh/sh/sh, beta-low or beta-high.

Table 4: Table of common fault modes.

This model has a number of shortcomings. It could be more accurate. For
example, in the active (on) region, although the voltage-current relationship is
roughly linear, the model only propagates the region’s extremes.

3.3 Comparison to other propagation schemes

LOCAL is similar to Stallman and Sussman’s EL which is also based on prop-
agation of constraints [8]. LOCAL differs from EL in three fundamental ways.
First, since the task is troubleshooting we need to make assumptions about
the faultedness of components, not just about operating regions of components.
Hence our nogood sets (which represent inconsistent sets of assumptions) include
assumptions about faultedness. Second, since values are known only approxi-
mately, the quantities propagated are ranges instead of numbers. Third, since
the quantities are ranges, two quantities can split or overlap; one of them can
be “better” or “worse” than another; and like EL they can be equal and un-
equal. One of the consequences of incomparable (e.g., overlapping) ranges and
the possibility of differing underlying assumptions for the same circuit value is
that LOCAL must often propagate multiple values for the same circuit quan-
tity which leads to substantial complexity. For instance, the kind of assumption
made about the faultedness of a component depends on the ranges of the quan-
tities being propagated through the component. We discuss this in more detail
in the following sections. These generalizations precluded LOCAL from prop-
agating variables (known as anonymous objects in EL).

25

Mode Explanation
ok/op/op collector is open, but BE junction is functional.
op/op/ok emitter is open, but BC junction is functional.
op/ok/op base is open, but EC junction is functional.
op/op/op all terminals open.
op/sh/op base is open, and the emitter is shorted to the collector.
sh/op/op collector is open, and the base is shorted to the emitter.
op/op/sh emitter is open, and the collector is shorted to the base.
sh/sh/sh all terminals are shorted with each other.

Table 5: Transistor fault modes.

4 Fault modes

So far we have placed almost no restrictions on how components can fail. Nev-
ertheless, the framework of coincidences, conflicts and corroborations provides
a very general framework for eliminating components from suspicion. However,
physical structure dictates that each component can only fail in a small number
of characteristic ways. Knowing these fault modes greatly increases LOCAL’s
diagnostic power. For example, if none of the possible fault modes of a com-
ponent are consistent with the observations, then that component cannot be
faulted. This principle is at the heart of this section.

The fault modes for components are enumerated in Table 4. The transistor
has so many possible fault modes that it is impossible to choose succinct labels
for each. The modes are listed in the form EB/EC/BC where each pair refers
to a transistor “junction” which is one of three modes: (1) OK, the junction is
working correctly, (2) SH, the junction is shorted, or (3) OP, the junction is
open. The possibilities are explained in Table 5.

Each fault mode can be described by a distinct model. We could introduce
an assumption for each possible fault mode and generalize our theory of conflict
and corroborations extract fault mode information. However, this is computa-
tionally infeasible. Instead, LOCAL uses explicit fault models, but exploits a
set of new inferential mechanisms to exploit them. Thus, the assumption sets
underlying propagations remain exactly as they were before. We presume that
if a component is faulted, then it remains in the same fault mode throughout
the entire troubleshooting scenario.

LOCAL associates a list of possible fault modes with each component. (In
order to be able to later explain its deductions, LOCAL also records the reasons
for each inference it makes about fault modes.) If all of the possible modes of
a component are eliminated, then that component is considered verified (i.e., a
singleton good). On the other hand, if a component is definitely determined to
be in a particular fault mode, then that component is the fault (i.e., a singleton
nogood). Knowledge of fault modes usually does not improve the goods or
nogoods produced by any individual coincidence. Rather, information gleaned

26

from combinations of coincidences now combine non-linearly. For example, one
conflict may indicate that if the resistor is faulted, then it must be high or
open while another indicates that if the resistor is faulted, then it must be
low or shorted. The combination of these two conflicts indicate the resistor is
unfaulted.

LOCAL incorporates three fault mode detection strategies: teleology, mode
consistency, and qualitative propagation. We describe each in turn.
Teleology. If a particular component is faulted and the overall circuit is mani-
festing a symptom, then the faulty component must be manifesting a symptom.
It follows that, if a component is not displaying a symptom of a known fault
mode, then it isn’t in that fault mode. For example, if a diode is open and caus-
ing a circuit symptom, then the voltage across it should be either very high or
very low (far below zero) — if the voltage isn’t, then the diode can’t be faulted.
Notice that this depends critically on knowing the purpose of the circuit; after
all, any open diode with no voltage across it would be verified by this rule.
Thus, teleological inferences are enabled only if the flag (see Section 2.2) which
indicates the circuit is malfunctioning is set.
Mode consistency. Fault modes whose behavior is inconsistent with any prop-
agations is eliminated. For instance, if there is any voltage across a diode, then
it cannot be shorted (since if it were shorted the voltage would be zero). The
fault mode is eliminated regardless of whether the propagation has assumptions.
If the propagation is incorrect, then one of its underlying components must be
faulted in which case the component in question isn’t faulted. Therefore it is
valid to eliminate the fault mode independent of the correctness of the propaga-
tion (unless of course the component itself is an assumption of the propagation
in which case nothing can be deduced about the fault modes).
Qualitative propagation. This strategy examines the conflicting propaga-
tions to identify what fault modes could have caused the particular conflict. Sup-
pose that through a long propagation chain, we determine the current through
a resistor and use Ohm’s Law to predict the voltage across it. A subsequent
measurement indicates this predicted voltage is too low. If the resistor is truly
faulted, then its resistance must be too high or must be open. On the other
hand, if it is not faulted, then the current supplied to it must have been too
low; the process then recurses examining the component that was used to de-
duce that high current. (In either case, the resistor cannot be in the fault modes
shorted or low.)

The justification structure produced by LOCAL records how each compo-
nent contributes to the propagation. This information is used to determine the
fault mode of the component, or which erroneous input propagations (if any)
could cause the observed symptoms. Consider the example of a high voltage
deduced by applying Ohm’s Law. The resistor expert records the justification of
the voltage with an annotation (RESISTORI) that it used a current to deduce
a voltage by Ohm’s Law. The qualitative propagation rule is: “All current-to-
voltage propagations, produced by a resistor, that are too high indicate either
that the resistor is shorted or low, or that the resistor’s input current is too
high.”

27

The qualitative propagator, instead of propagating ranges, through the cir-
cuit topology, propagates the tokens “high” and “low” in reverse direction
through the justification of the problematic propagation. The tokens refer to
whether the propagation is strictly higher or lower than was actually measured.
The potential difficulty is that, if a component occurs more than once, it is
not easy to tell which contribution dominates. To account for this, LOCAL
performs the entire qualitative propagation as one unit, identifying which fault
modes in which components could have caused the observed symptoms and lo-
calizing the fault to the union of these. Thus, if the same resistor contributes
twice to the same conflict, one explained by high or open and the other ex-
plained by low or shorted, no deduction about that resistor is made other than
it is under suspicion.

The qualitative propagator is invoked for every conflict, whether it is between
two propagations or a measurement and a propagation. For example, if the
range of propagation A lies entirely below the range of propagation B, then it
propagates “high” down B and “low” down A. This will collect all fault modes
which could remove the conflict by moving A up or B down. In the usual case,
one of A or B is a measurement, so it is only necessary to propagate “high” or
“low” down one propagation.

4.1 Diode fault modes

For the sake of brevity, we only analyze the fault modes of a diode in detail. The
following teleological rule for the diode is based on the presupposition that the
circuit contains only one fault and that it is currently manifesting a symptom. If
the voltage across the diode is less than some maximum, then the diode cannot
be open since it cannot be causing a symptom. If the current through the diode
is less than enough to warrant it being considered on, then it cannot be shorted
since if it were shorted and causing a symptom, then it would be conducting a
significant amount of current:

If VH ≤ VMAX , then the diode cannot be open. If
IH ≤ ION , then the diode cannot be shorted.

The mode consistency rule for a diode is as follows. If the voltage across
a diode is greater than zero, then it cannot be shorted since the definition of
shorted is that the voltage across the diode is zero. Similarly if the current
through a diode is greater than zero, then it cannot be open:

If VL ≥ .1, then the diode cannot be shorted. If IL ≥
IOFF , then the diode cannot be open.

When the value propagated by the diode leads to a later conflict, the fact
that the propagation was high or low can be used to determine the fault modes
in which the diode could be. The diode model can make six different prop-
agations: (1) from a new voltage deduce that the diode is on and propagate

28

Voltage
-50

Vmin Vmax

 0 0.8

Open Open

Current

I min I max SOPHIE-diode-ratings

1µ-1 A

Shorted Shorted

Figure 8: Diode Ratings

the corresponding current, (2) from a new voltage, deduce that the diode is
off and propagate the corresponding current, (3) from a new current, deduce
that the diode is off and propagate the corresponding voltage, (4) from a new
current, deduce that the diode is on and propagate the corresponding voltage,
(5) add extreme maximum and minimum voltages to the propagation database
before any measurements are performed, (6) add extreme initial maximum and
minimum currents.

For brevity we discuss only the rules for cases (1), (5) and (6). (These
qualitative propagation rules will presume all the preceding diode rules.) If the
current propagated by the diode model is high (i.e., the predicted is higher than
the measured), then the diode must be shorted since the current flowing through
it must be less than IMIN . No erroneous value of the voltage propagated into
the diode can cause this symptom since there is no valid region of operation in
which the diode current is deduced to be less than IMIN (IMIN is negative, and
represents the maximum reverse current flow).

On the other hand, if the propagated current flowing through the diode is
low (i.e., the predicted is lower than the measured), the diode must be shorted,
or the voltage across the diode is high (indicating that the diode is off rather
than it being on).

For the propagation V → I for diode off: If I = high,
then the diode must be shorted, and the symptom can-
not be caused by V . If I = low, then the diode must
be shorted, or V = high.

The diode being open never arises since a voltage low enough to indicate the
diode is off will also trigger the behavioral deduction that the diode cannot be
open.

The notion of state is crucial in understanding the behavior of the diode.
For example, the propagation rule “If VH ≤ VOFF , then propagate the range
I = [−∞, ION]” is better thought of as “If VH ≤ VOFF , then the diode must
be off, and if the diode is off, then the current flowing through it must be
I = [−∞, ION].” Therefore the state of the diode is explicitly recorded (with its
underlying assumptions, of course) and the record is referred to in explanations.

Cases (5) and (6) are much simpler.

29

If I = IMIN =high, then the diode must be shorted.
If I = IMAX =low, then the diode must be shorted.
If V = VMAX =low, then the diode must be open. If
V = VMIN =high, then the diode must be open.

4.2 Active troubleshooting extended

The simple scoring procedure for proposed measurements of Section 2.4 needs to
be considerably extended to accommodate the additional inferential complexi-
ties introduced into LOCAL. The actual scoring procedure used expands the
simple approach to account for the following effects:

• There may be multiple propagations for each circuit quantity.

• Propagations can have secondary assumptions. These assumptions con-
tribute to a conflict but not to a corroboration.

• Coincidences can no longer be simply divided into conflicts and corrob-
orations (see Figure 5). Some hypothetical coincidences turn out to be
neither corroborations nor conflicts, thereby making the scores of hypo-
thetical measurements higher than they should be. The wider the range
of the propagated value, the less probable an interesting coincidence will
occur.

• A measurement may eliminate some but not all of the fault modes of a
component.

• Due to incompleteness, important coincidences may occur only among
propagations caused by hypothetical measurements. LOCAL cannot cal-
culate these effects, making the score of certain measurements lower than
they should be.

The actual scoring procedure used by LOCAL attempts to accommodate all
these affects. However, the procedure is ad hoc and is not described here.

5 Circuit-specific knowledge

The first measurement, one even a neophyte debugger would perform, is to mea-
sure the output. This is always the single most informative measurement, but
LOCAL can draw no diagnostic conclusions from it. LOCAL can rarely draw
any diagnostic inferences from the second measurement as well as it is usually
too far from the output to produce any coincidences. Only after the student
has made a number of measurements have enough values been propagated to
produce some useful coincidences.

One approach to improving LOCAL’s diagnostic powers would be to use
more precise component models coupled with more powerful constraint prop-
agation techniques which could solve simultaneous equations over ranges. We
decided not to adopt this approach for a number of reasons:

30

• The required research task is very difficult. Even under the simplification
that circuit values are single valued and component models are linear,
troubleshooting is still difficult. Under this simplification a system like EL
could do the propagation, but initially every coincidence would depend on
every component since every component will in some way (usually small)
influence every value, thus making most coincidences (and certainly all
conflicts) uninteresting.

• The resulting algorithms would more than likely be computationally in-
tractable.

• LOCAL’s reasoning would diverge so far from a human’s that it would
no longer be able to produce useful explanations for its deductions.

So how do technicians troubleshoot successfully? Technicians and engineers
seem to draw extensively on causal, qualitative and teleological reasoning when
troubleshooting circuits. They exploit an intuitive “understanding how the
circuit works” to troubleshoot it. These forms of reasoning are exactly what are
missing from LOCAL and contribute to its poor performance in the early phases
of troubleshooting. LOCAL employs a myopic view of the circuit and thus fails
to utilize the global mechanism through which the circuit functions. Its myopic
view is appropriate when the fault has been isolated to some module or group of
components; it is entirely inappropriate for making initial measurements when
not enough propagations have been made.

Unfortunately, in 1977, the state of knowledge about causal and teleological
reasoning was not deep enough to permit their inclusion in SOPHIE III (even
in 1992 the field has not made enough advances to do without circuit-specific
knowledge). Our approach was, instead, to augment LOCAL by a simple rule-
based system which draws the missing conclusions about component faults. This
rule-based system, unlike the propagator, is circuit specific and must be changed
for every new circuit SOPHIE III encounters.

The ensuing loss of generality is unfortunate. In order to mitigate this
loss of generality we impose two principles when we encode this circuit-specific
knowledge. First, we impose a strict discipline upon its form, making addition,
modification and explanation of circuit-specific knowledge more stylized and less
error-prone. Second, the propagator and its underlying mechanisms for handling
assumptions and fault modes are used as a way of simplifying the deductions
that the rule-based system needs to make. Consider a simple example, suppose
we had the rule “if output voltage is low, then the regulator is shorted.” Suppose
we measure the load current, and LOCAL propagates it through the load to
determine that the output voltage is low. This triggers the regulator shorted
rule under the assumption that the load is correct. Therefore we have learned
that either regulator is shorted or the load is faulted. Utilizing LOCAL we need
only one rule to handle both of these cases. Because of LOCAL’s propagating
power we need only a few of the thousands of rules we would otherwise need to
have.

31

IP-28

DCS

REG

DCS.RECT DCS.FILT

T1<S1A>
T1<S1A>

D1 D2 C3 R8 C4

Q3

SOPHIE-IP28-tree2

DARL OPF

CCS V/DIF/CONT

FEEDBACK
/DAMPER

IVC.
THRESH

/AMP

C5R16DARL
.20XAMP

I/VOL/CONT

IVC
.ISENSE

CC R14 CR-S

CR R15R13

DARL
.LIMIT

R22

DARL
.100XAMP

SAFETY
LOAD

Q4

R12

Q6

CCS
.VOL/CONT

CCS
.ISENSE

R11

CCS.VC
.AMP

Q1

INVERTER

R9

VARIABLE/
REF

VREF

LQ/DCS

LQ/RECT

T2

LQ/RECT

D3

LQ/FILT

C1

56V/
REG

R3 D4

36V/
REG

R4 D5

VREF.FILT

R6

C2

VR

R5

VR-S

R7B R7A

VC/POT

VDC
.THRESH

/AMP

Q5D6

CCS
.AMP

Q2

C6

Figure 9: Hierarchical decomposition of IP-28 modules. See Appendix for a
description of the modules.

32

In addition the fact that circuit-specific rules lose us generality, we also lose
some capacity to make intelligent explanations since the rules are produced by a
person and not by LOCAL. Fortunately, there are four effects that mitigate this
loss. First, the rules are very simple, and thus any particular troubleshooting
deduction uses a sequence of them, thus admitting a kind of deductive argument
but with prestored explanation for each step in the sequence. Second, the rigid
discipline on the form of the rules makes it much easier to impose a coherent
structure on them. Third, LOCAL’s propagating power reduces the required
rule set to an essential core. Fourth, the contribution LOCAL makes to each
deduction is easily explained through its existing explanation facilities.

Although a circuit is constructed from components, it is more easily under-
stood as consisting of a small number of interacting modules which in turn,
consist of other modules. The hierarchy of modules of a circuit are represented
by a tree, the root of which is the circuit itself, the nodes of which are its mod-
ules and submodules, and the leaves of which are its components. Figure 9
illustrates the modules of the IP-28.

5.1 The qualitative-quantitative interface

LOCAL continuously checks for any propagation which affects a key set of volt-
ages and currents (called watchpoints). When a value is found for one of these
watchpoints, it maps the quantitative range to a qualitative value and asserts
the qualitative value in a distinct database. This assertion is recorded along
with the assumptions underlying the triggering propagation. This correspon-
dence is specified by a translation table. Consider the watch-point at the output
of the IP-28 voltage reference (the voltage between nodes N11 and N14). The
translation table is (high ≥ 31.0 ≥ eq ≥ 27.0 ≥ low). The numbers in the table
delineate the different qualitative ranges. If the voltage is above 31.0 volts, then
(V (N11 N14) high) is added to the qualitative data base. If the voltage lies
between 31 and 27, then (V (N11 N14) eq) is asserted. The voltage [30 , 32]
overlaps high and eq, so this voltage results in the assertion (V (N11 N14) (OR

high eq)). The 12 watchpoints and their translation tables for the IP-28 are
given by Table 6.

It is important to distinguish high and low used in this teleological sense,
to the “high” and “low” used in the qualitative propagator. In the teleological
sense high means the value is higher than it should be compared to a working
(i.e., unfaulted) circuit; while “high” in the propagator means the value was
higher than predicted, based on previously made measurements in the same
(i.e., faulted) circuit which may already be higher than it should be in a working
circuit.

Semiconductor components can have many operating regions or states, each
modeled by a distinctly different characteristic behavior. Whenever LOCAL
determines an operating region of a component, it adds an assertion of the form
(STATE <component> <state>) to the qualitative database. The possible states
were summarized in Table 1.

33

Watchpoint Translation table
B/Q4 (normal ≥ -.00055 ≥ on)
C/Q2 (high ≥ .0008 ≥ normal ≥ .00056 ≥ low)
L/R8 (high ≥ 1.3 ≥ heavy ≥ .8 ≥ light)
(N1 GROUND) (high ≥ 52.0 ≥ ok ≥ 45.0 ≥ low ≥ 30.0 ≥ verylow)
(N11 GROUND) Function of front panel settings
(N11 N14) Function of front panel settings
(N15 N16) (high ≥ 10.0 ≥ normal ≥ 1.0 ≥ low)
(N16 N14) (high ≥ 37.0 ≥ eq ≥ 35.0 ≥ low)
(N21 N1) (high ≥ 2.6 ≥ normal)
(N23 N14) (high ≥ 85.0 ≥ normal ≥ 60.0 ≥ low ≥ 1.0 ≥ zero ≥ 0.0)
(N24 N14) (high ≥ 58.0 ≥ eq ≥ 52.0 ≥ low)
(N4 GROUND) (high ≥ 45.0 ≥ normal)

Table 6: Watchpoints and translations for IP-28.

5.2 Module modes

Just like components, modules can have behavioral modes. The module mode
describes both the physical condition of the module (faulted or valid) and its
behavior. A module may have multiple valid and faulted modes. In writing
down the rules one needs to be very clear what the modes actually mean, oth-
erwise the rule set may become inconsistent and SOPHIE III will encounter
an irreconcilable contradiction (i.e., manifested as an empty nogood). Modules
typically have many terminals, therefore we adopt the convention that module
modes are associated with the quantities at one designated module port. For
example, the mode of the constant current source is completely determined by
its output voltage and current. The modes used in SOPHIE III are chosen
by the knowledge engineer on the basis of simplicity, and the majority of the
modules have only one or two (e.g., high and low) faulted modes.

A module can be unfaulted yet be exhibiting the behavior of a faulted mode
because the behavior of some external component makes the module’s behavior
appear to be faulty. Therefore we adopt the convention that a module is oper-
ating in a faulted mode if it is exhibiting faulty behavior and contains a fault
causing that symptom. A module which contains no faults is by definition oper-
ating in a valid mode. For example, the regulator section of the IP-28 has four
faulty modes: over-v-lim — regulator output voltage is higher than the volt-
age control setting, over-i-lim — regulator output current is higher than the
current control setting, low — regulator output is lower than either the voltage
or current control setting, and very-low — regulator output voltage is less than
1.2 volts and the output is lower than the control settings. The regulator can
exhibit the faulty behavior low either because it contains the fault or because it
is being supplied with a faulty signal (e.g., the DC source is low). The possible
fault modes need not be disjoint; the modes low and very-low overlap. The same

34

Parent
module
behaviors

Submodule
behaviors SOPHIE-behaviors

Figure 10: A Node in the Behavior Tree

component fault can cause two different modes depending on the precise shift in
parameter value (e.g., R8 high can mean R8 has a resistance anywhere between
3 and ∞ ohms) and the front panel control settings. As module behaviors need
not be disjoint, it is not only necessary to know all the possible behaviors of a
module, but also which behaviors are inconsistent with each other. For exam-
ple, the regulator behavior low is inconsistent with behavior high, but not with
behavior very-low.

The knowledge engineer must construct a knowledge structure which indi-
cates how each module’s behavior contributes to the behaviors of its parent.
We call this structure the behavior tree (although it is really a lattice). Ev-
ery node in the behavior tree corresponds to a behavioral mode of a module.
The incoming edges (see Figure 10) to a node correspond to the behaviors of
its submodules that could cause the node’s own behavior; the outgoing edges
from a node correspond to the parent behaviors that the node can cause. As a
module behavior can produce different behaviors in its parent, a node may have
multiple outgoing edges. The terminals of the behavior tree are the fault modes
of the components.

A node in the behavior tree is specified by the module name and the mode
it is in, abbreviated (<module> <mode>). Figure 11 describes a small part of the
IP-28 behavior tree. (The actual tree takes about two pages to print so we have
not included it in this paper.)

In order to be used successfully the behavior tree must obey the following
principles:

• Every possible mode (faulty or valid) must be included3.

• Every node (except for the overall module) must have a parent.

• Include all possible ways in which a module can affect a parent.

3Some faults immediately cause others, so these are left out of the tree by the single-fault
presupposition.

35

SOPHIE-IP28-tree

(IP - 28 very low)

(REG very low) (DCS zero) (DCS very low) (REG low)

(IP - 28 low)

Figure 11: Part of the IP-28 behavior tree. The behavior (IP-28 very-low) can
be caused by (REG very-low), (DCS zero), or (DCS very-low). The behavior
(IP-28 low) can be caused by (DCS zero), (DCS very-low), or (REG low). Note
that (DCS zero) and (DCS very-low) can cause both (IP-28 very-low) or (IP-28
low).

5.3 Mode detection rules

The assertions in the qualitative data base trigger rules which determine module
modes. Determining a module’s fault mode tells us a lot about the circuit as
the only remaining fault modes are those which can cause it (i.e., are below the
observed node in the behavior tree). This section and the next fleshes out this
intuition.

The mode detection rules need not pinpoint the exact behavioral mode of
the module. They can determine that the module is in one of a set of possible
modes (a localization), or determine that the module cannot be in some modes
(an elimination). The rules for VARIABLE/REF (the variable voltage reference
of the IP-28) are:

(V (N11 N14) high) -> (LOCALIZE VARIABLE/REF high ok)
(V (N11 N14) eq) -> (LOCALIZE VARIABLE/REF ok)
(V (N11 N14) low) -> (LOCALIZE VARIABLE/REF low)

(LOCALIZE <module> <mode1> <mode2> ...) indicates that the module must be
in one of the given modes. The first rule states that if the voltage between
nodes N11 and N14 is high, then the module VARIABLE/REF, if faulted, must be
in mode high. ok is added in the first case because the IP-28 voltage-reference
is designed to actively correct a low voltage on its output terminal, but not a
high voltage. Thus if a low voltage appears, then the voltage reference must be
faulted, but if a high voltage appears, then some external module could also be
supplying a voltage to its port. This latter possibility never arises in normal
operation, but can in faulty operation.

The rules for a constant current source are a good example of the expressive
power of using multiple valid modes. A peculiarity of a non-ideal current source
is that it cannot supply a constant current into an arbitrarily high-impedance
load. Its behavior when presented with a high-impedance load is deceiving.
The high (higher than it should be teleologically) output voltage suggests that
the current source is high, while the low output current suggests it is too low.

36

The constant current source (CCS) is modeled by four modes, two of which are
faulted and two of which are valid: high(faulted), low(faulted), saturated(ok),
and normal(ok):

(V (N4 GROUND) high) -> (LOCALIZE CCS saturated high)
(V (N4 GROUND) normal) -> (LOCALIZE CCS high low normal)
(I C/Q2 high) -> (LOCALIZE CCS high)
(I C/Q2 normal) -> (LOCALIZE CCS normal)
(I C/Q2 low) -> (LOCALIZE CCS saturated low)

In the case where the fault lies outside the constant current source resulting
in a high impedance load, the high voltage measurement indicates that the
source is either in modes high or saturated, and the low current measurement
indicates that the source is either in modes low or saturated. Hence a high
voltage combined with a low current indicates that it is in the saturated mode
and therefore not faulted.

When a propagation triggers a mode-detection rule, its assumptions, if any,
modify the effect of the rule (see next section). In addition, in limited circum-
stances, the qualitative propagator is invoked. For example, if the rule,

(V (N11 N14) low) -> (LOCALIZE VARIABLE/REF low),

is triggered, then the fault either lies in VARIABLE/REF or the triggering
propagation is low. The qualitative propagator can then be invoked on the
trigger restricting the fault modes of its underlying assumptions which are not
in VARIABLE/REF. The situation is quite different for the rule:

(V (N11 N14) high) -> (LOCALIZE VARIABLE/REF high ok)

In this case, there is little point to invoking the qualitative propagator as the
fault might well lie outside VARIABLE/REF or the assumptions underlying the
triggering propagation (because of the ok in the second rule consequence). The
general principle is that the qualitative propagator can only restrict the fault
modes of those components that would otherwise be verified by the consequent.
These conditions are clearly overly restrictive, and further research would be
required to determine exactly under which conditions the qualitative propagator
should be invoked.

Although the behavior tree contains a large number of modules and their
modes, it is only necessary to include a handful of rules to detect module modes
— the remaining module modes are either entailed by LOCAL’s propagations
or only affected indirectly. This can be seen from the simple fact that 12 watch-
points are completely adequate to diagnose all faults in the IP-28.

5.4 Reasoning with the behavior tree

Once the mode detection rules identify a module’s mode(s), reasoning over the
behavior tree identifies which faults can cause the observations. The behavior
tree is primarily a data structure to make it convenient to write and explain
circuit-specific rules. The presence of the behavior tree does not directly reduce

37

the number of rules needed (except in so far as it makes rule writing a much
simpler task). All of the consequents of the mode detection rules could be
replaced by a set of component mode eliminations or localizations. For example,
(LOCALIZE VARIABLE/REF low) could be replaced by a list of all the component
fault modes which cause the VARIABLE/REF to be low and there would be no
change in diagnostic precision. However, with this crude representation one is
far more prone to omit component modes.

The inference mechanism operates on a database which keeps a record of
the remaining possible modes for each module. All localizations are converted
to their equivalent eliminations so we need only consider inferences resulting
from an elimination. A distinct such data base is kept for each control panel
setting. However, one common database is kept for the component fault modes
as we presume the physical fault cannot change. This is sufficient to flow all
the deductions from one set of control settings to another. (For example, if a
module is actually faulted under one setting it must be in some faulted mode
under all settings.)

Consider the elimination of a faulty mode. If a faulty node is eliminated,
the nodes below it can no longer be the cause; each of these lower nodes is
examined to see whether it still has a parent (i.e., can still cause any other
behavior), and if not, it too is eliminated. Analogously, if a mode is eliminated
it can no longer cause any of its parents, so each parent behavior it can cause is
examined to see whether it still can be caused by another behavior, and if not it
too is eliminated. One elimination can thus recursively generate many more. If
all possible faulty behaviors of a module are eliminated, then the module cannot
be faulted. It is unecessary to explicitly implement the intuitive principle that if
a module is unfaulted, then all of its submodules are unfaulted. This is a simple
consequence of the fault mode elimination mechanism just outlined. If all of a
module’s faulty behaviors have been eliminated, then its submodules have no
possible faulty behaviors either.

Elimination of valid modes is simpler. While a faulty behavior can be caused
by a faulty behavior in any one of the submodules, a valid behavior only results
if all of the submodules are behaving validly. Thus the elimination of a valid
node has no direct consequences on the modes below (unless there is only one)
it since the elimination of any one of these alone would be sufficient to eliminate
the mode itself. On the other hand, when a valid mode is eliminated its parent
cannot happen unless it could also be caused by an alternative valid mode of the
module. If all possible valid behaviors are eliminated, then the module must
be faulted. Under the single-fault assumption and the fact that modules do
not overlap, any sibling modules are automatically unfaulted. If a module is
determined to contain a fault, then all of its parent modules are, by definition,
also faulted. Since the particular faulty mode need not be known, this is achieved
by eliminating all of the valid modes of the parent modules.

The propagations which cause the original elimination may have underlying
assumptions which modify the consequent eliminations and localizations. These
assumptions must be carried along during the recursive eliminations, contin-
uously enforcing the restriction that an elimination of a faulty mode cannot

38

depend on an assumption about the module in question. Eliminations of valid
modes can, of course, depend on the module itself. An attempt to eliminate a
mode of a module upon which the triggering propagation depends is ignored,
however, the recursive eliminations are still attempted. Usually the underlying
assumptions refer to only some of the components of the module, in which case
the elimination still leads to deductions about that part of the module which
does not overlap with the assumptions underlying the triggering propagation.

By far the majority of SOPHIE III’s circuit-specific rules detect module
modes. The behavior tree, unfortunately, can only represent hierarchical module
interactions, and cannot represent causal interactions among same-level mod-
ules. SOPHIE III employs three additional rule types to capture these latter
type of knowledge. We discuss each individually in the following subsections.

5.5 Good neighbor rules

Sometimes when a module is discovered to be unfaulted and behaving nor-
mally (as distinguished from being unfaulted but behaving symptomatically)
its “suppliers” and “consumers” can also be determined to be behaving nor-
mally, and hence to be unfaulted. Consider an example from the IP-28. The
constant-voltage reference of this power-supply (see Figure 4) consists of a raw
DC voltage which is first regulated to 56 volts and then regulated down to 36
volts. The only supplier of power to the 36-volt regulator is the 56-volt regu-
lator, and the only consumer of the 56 volt output is the 36-volt regulator. If
voltage of the second reference is 36 volts, then it is operating normally and
unfaulted, and the 56-volt regulator must be unfaulted and operating normally.
To facilitate good neighbor rules SOPHIE III maintains an additional mode for
every module, operating-ok, which is consistent with every other good mode,
and inconsistent with every other faulty mode. The operating-ok mode indi-
cates a module is unfaulted and behaving normally. Thus, localizing a module’s
mode to operating-ok is stronger than just localizing its mode to just ok.

The module-detection rule,

(V (N11 N16) eq) -> (LOCALIZE 36V/REG operating-ok)

also triggers the good neighbor rule,

(36V/REG operating-ok) -> (LOCALIZE 56V/REG operating-ok),

which, in turn, triggers the good neighbor rule,

(56V/REG operating-ok) -> (LOCALIZE LQ/DCS operating-ok).

5.6 Bad neighbor rules

Faulty behavior can be caused by neighboring faulty behaviors. This fact can
be stated by bad neighbor rules of the form:

(BEHAVIOR <module1> <mode1>) -> (BEHAVIOR <module2> <mode2>)

39

Such a rule states that if <module1> is observed behaving in faulty mode <mode1>

that this can be explained by faulty module <module2> behaving in <mode2>.
Consider the voltage-reference example again. If the output of the 36-volt reg-
ulator is low, then it is either faulted, being supplied with a bad signal (the
56-volt regulator is low), or being presented a bad load (the output filter of the
voltage reference is shorted). One example of a bad neighbor rule is:

(BEHAVIOR 36V/REG low) -> (BEHAVIOR 56V/REG low)

Bad neighbor rules are invoked by mode detection rules or other bad neighbor
rules. For example, the mode detection rule:

(V (N11 N16) low) -> (LOCALIZE 36V/REG low ok),

is rewritten as:

(V (N11 N16) low) -> (BEHAVIOR 36V/REG low).

This rule now has the additional effect that (BEHAVIOR 36V/REG low) needs to
be explained. As a BEHAVIOR assertion states that the behavior is in a particular
mode which may or may not originate within the module, the ok mode is always
implicit as a possibility. Another bad neighbor rule is:

(BEHAVIOR 56V/REG low) -> (BEHAVIOR LQ/DCS low).

All bad neighbor rules are triggered and run until quiescent and the fault is lo-
calized to one of the faults mentioned in one of the bad neighbor rules. Thus, the
result is a disjunctive localize, e.g., the above example becomes a (OR (LOCALIZE

56V/REG low) (LOCALIZE 36V/REG low) (LOCALIZE LQ/DCS zero) ...).

5.7 Exception rules

The third and last type of rule does not fit any particular conceptual pattern.
They are all of the form:

<measurement> -> (ELIMINATE <module> <mode>).

These are like mode detection rules, but the watchpoint is not at the module’s
boundary. For example, one of the three such rules for the IP-28 is:

(V (N11 N14) EQ) -> (ELIMINATE Q5 sh/op/op).

There are two components between Q5 (see Figure 4) and the nodes N11 and
N14. Unfortunately, this rather inelegant rule is needed. This particular fault
mode for Q5 makes the voltage regulator inoperative, and also shorts the output
of the voltage reference to the output of the overall power-supply. The voltage
reference is very weak, so the main power-supply will dominate. Thus, if the
output of the voltage-reference is normal, Q5 must not be shorted in this way.
(If it were, then it would not be voltage regulating, causing the voltage across
the reference to be high.) This is a very subtle inference which would not be
generally possible without a rather sophisticated causal and teleological model
of the IP-28.

40

5.8 Handling disjunction

As ranges can overlap multiple qualitative values, the database can contain
disjunctive assertions such as (V (N11 N14) (OR high eq)). Such assertions are
handled by processing each of the individual disjuncts individually and then
intersecting any resulting module eliminations. In the example, the disjunc-
tion is processed by first identifying all the mode eliminations of (V (N11 N14)

high) and then identifying the mode eliminations of (V (N11 N14) eq), and only
permanently recording those consequences which are common to both. This
paradigm is used for all types of circuit-specific rules.

5.9 Example of reasoning with the behavior tree

The top-level of the behavior tree for the IP-28 is illustrated in Figure 12.
Valid modes are omitted. Suppose the output of the IP-28 is measured to
be too low. A mode detection rule monitoring the output applies and does a
localization of (IP-28 low). This is transformed into the equivalent elimination
of all those modes inconsistent with low: (IP-28 high) and (IP-28 ok). Consider
the elimination of (IP-28 high). Looking at the tree we see that (IP-28 high)

can be caused by (REG not-limiting), (REG over-v-lim), and (REG over-i-lim).
These modes have only one parent so they can be eliminated. The eliminations
recurse until the component level is reached. For example:

(ELIMINATE REG over-v-lim)
-> (ELIMINATE V/DIF/CONT always-off)
-> (ELIMINATE VDC.THRESH/AMP always-off)
-> (ELIMINATE Q5 op/op/op)

Suppose another measurement localizes VARIABLE/REF be low. (VARIABLE/REF

ok) is inconsistent with it and is eliminated. There is no way to tell which sub-
module of VARIABLE/REF is faulted, so the eliminations do not recurse. Reasoning
up the behavior tree we obtain:

(LOCALIZE VARIABLE/REF low)
-> (LOCALIZE V/DIF/CONT low)
-> (LOCALIZE REG low)
-> (LOCALIZE IP-28 limit-too-low)

The (LOCALIZE V/DIF/CONT low) is a new piece of information we did not know
before. Presuming that the circuit had only a single fault, all components
not explicitly listed as faulted or contained within VARIABLE/REF must be ok.
Figure 13 presents the faulty behaviors that are still possible along with those
connections in the behavior tree that are relevant to them.

5.10 Troubleshooting with circuit-specific knowledge

The same techniques for using the general knowledge to score measurements
apply to the circuit-specific knowledge. Recall that the best strategy is to iden-
tify a measurement with the maximum expected information value. SOPHIE
III computes the expected diagnostic scores for every possible coincidence and

41

(IP-28 HIGH)

(IP-28 VERY-LOW)

(REG NOT-LIMITING)

(REG OVER-V-LIM)

(REG OVER-I-LIM)

(IP-28 LOW)

(DCS VERY LOW)

(DCS ZERO)

(REG LOW)

(REG VERY-LOW-TO-ZERO)

SOPHIE-IP28high-low-vlow

Figure 12: Top of IP-28’s behavior tree

42

(VC/POT LOW)

(R7A SHORTED)

(R7AOPEN)

(R7B SHORTED)

(R7B LOW)

(V/ REF LOW)

(LQ/DCS ZERO)

(56V/REG LOW)

(36V/REG LOW)

(VREF.FILT LOW)

(REG LOW)

(V/DIF/CONT LIMIT-TOO-LOW)

(VARIABLE/REF LOW)

(IP-28 LOW)

(LQ/REG ZERO) (D3 OPEN)

(R3 OPEN)

(R3 HIGH)

(D4 BREAKDOWN LOW)
(R4 OPEN)

(R4 HIGH)

(D5 BREAKDOWN LOW)

(VR-S LOW)

(R5 OPEN)

(R5 LOW)

(C2 SHORTED) (C2 LEAKY)

(R6 OPEN)

(R6 HIGH)

SOPHIE-IP28-low

Figure 13: Final IP-28 behavior tree which shows the only remaining possible
component faults are the 16 leaves (in 10 components).

at every watch-point. The score is computed on the basis of the combined di-
agnostic results from both LOCAL and the circuit specific rules. Obviously,
early in the troubleshooting the measurements at the watch-points have higher
scores; later in the troubleshooting the scores for hypothetical coincidences with
propagations will be preferred.

Although SOPHIE III is now a nearly optimal troubleshooter of the IP-
28, its scoring of early student measurements remains poor. Consider the case
where the student makes a measurement which is neither at a watch-point, nor
coincides with an existing propagation. Our scheme does not compute any ex-
pected score for such measurements. Also, it does not consider the influence of
propagations into multiple watchpoints, or into a watchpoint but with underly-
ing assumptions. We implemented a version of SOPHIE III which computes
better scores by actually simulating the propagation and behavior tree effects
of various outcomes for each measurement point. Unfortunately, this version
was too slow to be of practical use. Therefore, as a consequence we did not
allow SOPHIE III to critique a student’s measurement on the basis of easily
computed but approximate scores.

We used a alternative, cruder, technique to critique the student’s early mea-
surements. We relied on the observation that SOPHIE III’s score for a mea-
surement is always too low (as it doesn’t simulate the propagation, it cannot
foresee all the results of measurements). On the other hand, once a student
has made a particular measurement SOPHIE III can precisely determine the
actual information gain produced by the measurement. Given the topology

43

of the IP-28 every early measurement, no matter what its outcome, should
provide substantial diagnostic information. Therefore, when a student’s actual
measurement produces substantially less information than the expected score
for some other measurement, we can be certain the measurement is substan-
tially suboptimal. At this point the coach can critique the student for his poor
measurement.

6 Conclusions

In the introduction we laid out a set of five desiderata for the inferential ma-
chinery. SOPHIE III’s electronic expert meets all of the criteria fairly well.
However, we do not yet have a general diagnostician for arbitrary circuits, but
we have made a major step. The necessity of circuit-specific rules is unfortu-
nate, so let us re-examine those. The following table enumerates the types and
number of circuit-specific rules used in SOPHIE III:

Mode detection rules 33
Good neighbor rules 4
Bad neighbor rules 4
Exception rules 9
Total 50

The fact that SOPHIE III uses only 50 circuit-specific rules deserves fur-
ther discussion as this number seems both too high and too low. If we added
mode detection rules for every possible module, as well as all possible good
and bad neighbor rules, then we would probably require on the order of 1000
rules. Almost all of these rules are unnecessary because LOCAL propagation
mechanism makes it necessary to represent only the core few.

Although SOPHIE III requires only a few rules to adequately troubleshoot
the IP-28, does not mean that these rules are easy to obtain. Even after ex-
tensive experience with SOPHIE III we cannot be totally confident that it
can handle every possible fault. It would be far more useful if we could build a
diagnostician which did not depend on any circuit-specific rules at all. This sug-
gests two directions for future research. First, LOCAL’s inferential capabilities
could be expanded in some way to be more sophisticated. Second, there might
be some way to construct the necessary rules in another more computationally
intensive process which examined the circuit much more carefully.

6.1 A re-examination of presuppositions

In order to draw diagnostic inferences, SOPHIE III makes a number of presup-
positions. These presuppositions impose a restriction on its capabilities because
all of them are violated in some situations. The consequences of violating them
range from encountering irreconcilable contradictions (i.e., empty nogoods) to
very inefficient troubleshooting. In this section, we briefly re-examine some of
those presuppositions.

44

The presuppositions listed in the introduction fall into two classes. The first
class consists of good troubleshooting heuristics. These should be assumed to
hold only until evidence is discovered to the contrary. This class includes:

• The circuit contains a single fault.

• Faults only occur in components; not in circuit topology.

• All component fault modes are known.

• The circuit is non-intermittent.

• The faulty component is currently manifesting a symptom.

In a more general theory of troubleshooting, they should be treated as defeasible
assumptions subject to explicit reasoning, much like the component assumptions
of LOCAL. They are, in essence, a deeper level of assumptions, examined only
when all the component assumptions have been eliminated. Every deduction
made by LOCAL which depends on one of these presupposition should explic-
itly include this fact as an underlying assumption of that deduction. Unlike
the component assumptions, these presuppositional assumptions influence the
inference mechanism making the deductions. Within this extended framework,
LOCAL, would become just a special case of a more powerful reasoner that
was capable of “deliberating” over its own actions and theories.

The single-fault presupposition is the most pervasive. Many of SOPHIE
III’s deductions depend on it. The ideas of coincidence, conflict and corrobora-
tion are generalizable to multiple faults, but many of the the specific inference
strategies used by LOCAL do not apply directly. For example, without the
single-fault presupposition a corroboration can not verify the underlying com-
ponents nor a conflict verify the components that aren’t mentioned by its un-
derlying assumptions. Also, much of the reasoning mechanism of the behavior
tree is no longer valid. The combination of two faults might cause an unusual
behavior which is not captured by any of the module’s fault modes.

For a very nonobvious reason, multiple independent faults occur more fre-
quently than one otherwise would expect within our framework. Designers typ-
ically design circuits so that they can handle wide variations in component
parameters. This allows designers to use cheaper components with larger toler-
ances as well as to cope with changes in parameter values with temperature and
age. Manufacturers typically produce components in only a few fixed tolerance
levels and therefore the tolerance specified by the designer is always tighter than
that of the component actually used. Thus a component may be faulted (exceed
its tolerance), but the circuit still function correctly. The component definitely
is faulted: The same component might not work in another circuit where the
designer’s tolerance is closer to the manufacturer’s. The difficulty ensues when
another component fault does cause the circuit to manifest a global symptom.
The circuit now has multiple independent faults, and SOPHIE III may well
encounter an irreconcilable contradiction troubleshooting it. This suggests that

45

LOCAL should use the designer’s, not the manufacturer’s tolerances, for com-
ponent parameters.

We have been discussing one alternative to the single-fault case, that of mul-
tiple independent faults. A more common case is that of multiple consequential
faults. For example, an output transistor may short causing another transistor
to open. The single-fault heuristic often works well for such multiple faults.
Frequently, the component that originally faulted will no longer be manifest-
ing a symptom since the consequential fault has effectively made the originally
faulted component appear unfaulted by isolating it. In the example, the voltages
and currents around the output transistor would be negligible if the transistor
it caused to open was responsible for delivering it its power. Since the output
transistor now has no power, it will appear to be fault-free, thereby temporarily
reducing the situation to a single-fault case.

The second presupposition, that SOPHIE III presumes all possible faults
are known, is again good heuristic, but again does not always hold. Possible
topological faults include a short between two nodes which do not share a com-
mon component (e.g., two geometrically adjacent, but topologically distant and
components which have been physically bent so that their leads touch) or an
open node which disconnects some components from others.

A more subtle violation occurs with component fault modes, since it is hard
to hypothesize all the ways in which a component can fault. For example, if the
diode faulted so as to become a resistor, with the voltage across it greater than
VMAX and the current through it greater than IMIN , then the propagator would
eventually encounter a conflict with no underlying assumptions. An example of
such a conflict, a measurement of the voltage across the diode would indicate
it was open, while a measurement of the current through it would indicate that
it couldn’t be. Fortunately, this is an extremely rare fault mode for diodes.
Diodes usually fault by becoming either nearly shorted or completely open —
and these are the modes currently modeled.

The non-intermittency presupposition is equivalent to assuming that nothing
changes between the times measurements are taken and that the fault does not
change when the control panel or load is changed.

The presupposition that the circuit’s present symptom is a direct conse-
quence of some component presently behaving symptomatically, is only true for
circuits which do not have some kind of “memory.” Suppose the circuit had a
circuit breaker on its input which blew every time the power supply was plugged
in. At the time we observe the power supply output it is manifesting a symp-
tom (no output), but every component is behaving correctly. As a consequence
LOCAL would encounter an irreconcilable contradiction. The problem is, of
course, that the circuit breaker “remembers” that some component was shorting
out when the power supply was first plugged in, even though the component
might not be doing so at present. This is not a isolated case, most good power
supplies, for example, employ a kind of electronic circuit breaker in addition
to the usual regulation as an extra measure of protection for the circuitry con-
nected to the power supply. This type of fault is notoriously hard to find since
the troubleshooter does not get the opportunity to see the faulted component

46

manifest its symptom.
The remaining presuppositions are limitations which need to be addressed

by some future theory:

• Only DC behavior is important.

• All faults are equally likely.

• All measurements are equally easy to make.

• All fault modes are equally likely.

In many circuits AC behavior is important, so LOCAL needs to be extended
to deal with time and AC effects. As transistors are far more likely to fail
than resistors, the simple measurement scoring function LOCAL does not zero
in on more probable faults earlier. In the simulated electronics laboratory all
measurements cost the same, but in real circuits some measurements are far
more easy to make than others. For example, DC currents are much harder to
measure than voltages because they usually require physically removing one of
the component’s terminals. Resistors are far more likely to open than to short,
therefore if we have eliminated opening as a fault mode for a resistor which
should treat shorting as a very low probability fault.

6.2 Final observations

There are many promising directions along which the work described in this pa-
per could have continued. However, two very different problems, one pragmatic
and one intellectual, stood in our way. The pragmatic issue was the need for
large address space and personal Lisp machines; the intellectual issue was our
increased awareness that we did not really know what it meant to “understand”
how a complex piece of equipment works. In particular we did not know what
mental models the experts had of a given system’s functioning, nor did we know
how these models were learned, for they certainly weren’t explicitly taught.

The computational issue that we faced with SOPHIE III was that it barely
fits into the (256K words) address space of a PDP-10. SPICE, SOPHIE I and
SOPHIE II each already occupied its own separate address space so nothing
could be gained by running SOPHIE III stand-alone. This made it extremely
difficult to extend SOPHIE III, especially to expand its coaching capabilities
along the lines developing out of our coaching research on mathematical games.
Address space limitations were not our only concern: To do “formative” eval-
uations, discovering the reasons for the pedagogical success and failures of our
system, we needed the speed of efficient, dedicated Lisp machines. Without this
speed, student reactions to the long and unpredictable delays often swamped
our experimental probes.

The issue concerning the need for a theory of human understanding of com-
plex systems, in particular circuits, was clearly the more challenging one. In-
deed, much of our recent research has been directed at attacking this problem.

47

It quickly became clear to us that the work that went into SOPHIE II and III
on explanation put the cart before the horse. We had no adequate theory of
what it meant to understand a circuit and hence no well defined “target” model
of what we wanted the student to learn. As a consequence no real theory of
explanation was forthcoming.

In our experiments with SOPHIE I and II we substantiated that the be-
ginner and expert alike prefer to reason about the circuit in qualitative and
causal terms. The students preferred qualitative explanations and were only
comfortable about their understanding if it was in terms of a qualitative causal
mechanism, but SOPHIE III’s only reference to causality is in the precompiled
explanations for its circuit-specific rules. It could not generate new ones nor
could it expand old ones. A significant step toward the necessary robust theory
of causality was achieved the following year by de Kleer, in his doctoral disser-
tation presenting a theory of qualitative causal reasoning about electronics [3].
His theory has turned out to provide a basis for constructing human-oriented
explanations.

7 Acknowledgments

The SOPHIE project has been influenced and helped by numerous people. We
are especially indebted to Alan Bell and Richard Burton for the substantial
amount of work he did on SOPHIE I. Richard Rubenstein and Ned Benhaim
helped a great deal on SOPHIE II. We are also grateful to Ed Gardner for
making possible the original SOPHIE project and to Harry O’Neil and Dexter
Fletcher for their constant encouragement and willingness to shelter the project
from various bureaucratic constraints. The project was initially funded by the
Air Force Human Resource Laboratory at Lowry Air Force Base and later by
DARPA/CTO and the Tri-Service training laboratories. Numerous people
have read preliminary drafts and have made invaluable suggestions. Daniel G.
Bobrow, Bruce Buchanan, Bill Clancey, Jaime Carbonell, Ken Forbus, Olivier
Raimon and Rachel Rutherford deserve special thanks for their patience and
insights.

References

[1] Brown, J.S., Burton, R. R. and de Kleer, J., Pedagogical, natural language
and knowledge engineering techniques in SOPHIE I, II and III, in: D.
Sleeman and J.S. Brown (Eds.), Intelligent Tutoring Systems, (Academic
Press, New York, 1982) 227–282.

[2] de Kleer, J., Local methods of localizing faults in electronic circuits, Arti-
ficial Intelligence Laboratory, AIM-394, Cambridge: M.I.T., 1976.

48

[3] de Kleer, J., How circuits work, Artificial Intelligence 24 (1984) 205–280;
also in: D.G. Bobrow (Ed.), Reasoning About Physical Systems (MIT Press
and North Holland, 1985) 205–280. 11-April 24, 1992-May 14, 2019

[4] de Kleer, J. and Brown, J.S., Mental models of physical mechanisms and
their acquisition, in: J.R. Anderson (Ed.), Cognitive Skills and their Ac-
quisition, (Erlbaum, Hillsdale, NJ, 1981) 285–310.

[5] Doyle, J., A truth maintenance system, Artificial Intelligence 12 (1979)
231–272.

[6] Nagel, L.W. and D.O. Pederson, Simulation program with integrated cir-
cuit emphasis, Proceedings of the Sixteenth Midwest Symposium on Circuit
Theory, Waterloo, Canada, 1973.

[7] Rieger, C. and Grinberg, M., The declarative representation and procedural
simulation of causality in physical mechanisms, in: Proceedings IJCAI-77,
Cambridge, MA, (August, 1977), 250–256.

[8] Stallman, R. and Sussman, G.J., Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis, Ar-
tificial Intelligence 9 (1977) 135–196.

49

Appendix: IP-28 Modules

DCS The main DC source for the power supply.

DCS.RECT The rectified DC power.

DCS.FILT Filters the raw DC provided by the rectifier section.

REG Regulates the output based on the information fed back by the output
sensors.

DARL The darlington pair which is the central controlling element in the power
supply.

DARL.20XAMP The second stage of the darlington which amplifies approximately
20 times.

DARL.LIMIT A resistance which limits the gain of the second darlington transis-
tor.

DARL.100XAMP The first stage of the darlington which amplifies approximately
100 times.

SAFETY/LOAD The minimal load on the darlington.

I/VOL/CNT This controls the amount of current provided to the load.

IVC.SENSE Senses whether the amount of current provided to the load is over
the limit.

CC A variable control which sets the maximum amount of current provided to
the load.

CR-S A switch which sets the range of the current control.

IVC.THRESH/AMP Amplifies the signal provided by the current sensor.

OPF Filters the output after regulation.

CCS A source of constant current used to establish a reference.

CCS.VOL/CONT A constant current source used to control another current source.

CCS.ISENSE A resistance which is used to sense the output current of the CCS.VOL/CONT

CCS.VC.AMP Amplifies the signal provided by the current sensor.

INVERTER Because of the arrangement of components, the current source can be
inverted.

CCS.AMP Amplifies the output of the simple current source to provide a strong
reference.

50

V/DIF/CONT This computes the difference between the reference and the output.

VARIABLE/REF Provides a variable reference voltage for comparison.

VREF Provides a fixed reference voltage.

LQ/DCS A separate source of unregulated DC used to establish a reference.

LQ/RECT Provides the raw DC for the reference.

LQ/FILT Filters the raw DC provided by the rectifier section.

56V/REG A 56 volt reference source.

36V/REG A 36 volt reference source.

VREF.FILT An output filter for the fixed voltage reference.

VR-S Sets the range of the voltage control.

VC/POT Controls the reference voltage and hence the maximum output voltage.

VDC.THRESH/AMP Computes the difference between the output and the reference
and amplifies it.

FEEDBACK/DAMPER Damps out any potential oscillation caused by the feedback.

51

